Serine/threonine-protein kinase PAK 2

Details

Name
Serine/threonine-protein kinase PAK 2
Synonyms
  • 2.7.11.1
  • Gamma-PAK
  • p21-activated kinase 2
  • p58
  • PAK-2
  • PAK65
  • S6/H4 kinase
Gene Name
PAK2
Organism
Humans
Amino acid sequence
>lcl|BSEQ0051890|Serine/threonine-protein kinase PAK 2
MSDNGELEDKPPAPPVRMSSTIFSTGGKDPLSANHSLKPLPSVPEEKKPRHKIISIFSGT
EKGSKKKEKERPEISPPSDFEHTIHVGFDAVTGEFTGMPEQWARLLQTSNITKLEQKKNP
QAVLDVLKFYDSNTVKQKYLSFTPPEKDGFPSGTPALNAKGTEAPAVVTEEEDDDEETAP
PVIAPRPDHTKSIYTRSVIDPVPAPVGDSHVDGAAKSLDKQKKKTKMTDEEIMEKLRTIV
SIGDPKKKYTRYEKIGQGASGTVFTATDVALGQEVAIKQINLQKQPKKELIINEILVMKE
LKNPNIVNFLDSYLVGDELFVVMEYLAGGSLTDVVTETCMDEAQIAAVCRECLQALEFLH
ANQVIHRDIKSDNVLLGMEGSVKLTDFGFCAQITPEQSKRSTMVGTPYWMAPEVVTRKAY
GPKVDIWSLGIMAIEMVEGEPPYLNENPLRALYLIATNGTPELQNPEKLSPIFRDFLNRC
LEMDVEKRGSAKELLQHPFLKLAKPLSSLTPLIMAAKEAMKSNR
Number of residues
524
Molecular Weight
58042.135
Theoretical pI
Not Available
GO Classification
Functions
ATP binding / cadherin binding / identical protein binding / protein kinase activity / protein kinase binding / protein serine/threonine kinase activity / protein tyrosine kinase activator activity / Rac GTPase binding / small GTPase binding
Processes
actin cytoskeleton organization / apoptotic process / cell migration / cellular response to organic cyclic compound / dendritic spine development / Fc-epsilon receptor signaling pathway / interleukin-12-mediated signaling pathway / negative regulation of apoptotic process / negative regulation of cysteine-type endopeptidase activity involved in execution phase of apoptosis / negative regulation of protein kinase activity / peptidyl-serine phosphorylation / phosphorylation / positive regulation of extrinsic apoptotic signaling pathway / positive regulation of peptidyl-tyrosine phosphorylation / protein autophosphorylation / protein phosphorylation / regulation of defense response to virus by virus / regulation of growth / regulation of MAPK cascade / regulation of mitotic cell cycle / Rho protein signal transduction / signal transduction / signal transduction by protein phosphorylation / stimulatory C-type lectin receptor signaling pathway / stress-activated protein kinase signaling cascade / T cell costimulation / T cell receptor signaling pathway / vascular endothelial growth factor receptor signaling pathway
Components
cytoplasm / cytosol / nucleus / perinuclear region of cytoplasm / plasma membrane
General Function
Serine/threonine protein kinase that plays a role in a variety of different signaling pathways including cytoskeleton regulation, cell motility, cell cycle progression, apoptosis or proliferation. Acts as downstream effector of the small GTPases CDC42 and RAC1. Activation by the binding of active CDC42 and RAC1 results in a conformational change and a subsequent autophosphorylation on several serine and/or threonine residues. Full-length PAK2 stimulates cell survival and cell growth. Phosphorylates MAPK4 and MAPK6 and activates the downstream target MAPKAPK5, a regulator of F-actin polymerization and cell migration. Phosphorylates JUN and plays an important role in EGF-induced cell proliferation. Phosphorylates many other substrates including histone H4 to promote assembly of H3.3 and H4 into nucleosomes, BAD, ribosomal protein S6, or MBP. Additionally, associates with ARHGEF7 and GIT1 to perform kinase-independent functions such as spindle orientation control during mitosis. On the other hand, apoptotic stimuli such as DNA damage lead to caspase-mediated cleavage of PAK2, generating PAK-2p34, an active p34 fragment that translocates to the nucleus and promotes cellular apoptosis involving the JNK signaling pathway. Caspase-activated PAK2 phosphorylates MKNK1 and reduces cellular translation.
Specific Function
Atp binding
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0051891|Serine/threonine-protein kinase PAK 2 (PAK2)
ATGTCTGATAACGGAGAACTGGAAGATAAGCCTCCAGCACCTCCTGTGCGAATGAGCAGC
ACCATCTTTAGCACTGGAGGCAAAGACCCTTTGTCAGCCAATCACAGTTTGAAACCTTTG
CCCTCTGTTCCAGAAGAGAAAAAGCCCAGGCATAAAATCATCTCCATATTCTCAGGCACA
GAGAAAGGAAGTAAAAAGAAAGAAAAGGAACGGCCAGAAATTTCTCCTCCATCTGATTTT
GAGCACACCATCCATGTTGGCTTTGATGCTGTTACTGGAGAATTCACTGGCATGCCAGAA
CAGTGGGCTCGATTACTACAGACCTCCAATATCACCAAACTAGAGCAAAAGAAGAATCCT
CAGGCTGTGCTGGATGTCCTAAAGTTCTACGACTCCAACACAGTGAAGCAGAAATATCTG
AGCTTTACTCCTCCTGAGAAAGATGGCTTTCCTTCTGGAACACCAGCACTGAATGCCAAG
GGAACAGAAGCACCCGCAGTAGTGACAGAGGAGGAGGATGATGATGAAGAGACTGCTCCT
CCCGTTATTGCCCCGCGACCGGATCATACGAAATCAATTTACACACGGTCTGTAATTGAC
CCTGTTCCTGCACCAGTTGGTGATTCACATGTTGATGGTGCTGCCAAGTCTTTAGACAAA
CAGAAAAAGAAGACTAAGATGACAGATGAAGAGATTATGGAGAAATTAAGAACTATCGTG
AGCATAGGTGACCCTAAGAAAAAATATACAAGATATGAAAAAATTGGACAAGGGGCTTCT
GGTACAGTTTTCACTGCTACTGACGTTGCACTGGGACAGGAGGTTGCTATCAAACAAATT
AATTTACAGAAACAGCCAAAGAAGGAACTGATCATTAACGAGATTCTGGTGATGAAAGAA
TTGAAAAATCCCAACATCGTTAACTTTTTGGACAGTTACCTGGTAGGAGATGAATTGTTT
GTGGTCATGGAATACCTTGCTGGGGGGTCACTCACTGATGTGGTAACAGAAACGTGCATG
GATGAAGCACAGATTGCTGCTGTATGCAGAGAGTGTTTACAGGCATTGGAGTTTTTACAT
GCTAATCAAGTGATCCACAGAGACATCAAAAGTGACAATGTACTTTTGGGAATGGAAGGA
TCTGTTAAGCTCACTGACTTTGGTTTCTGTGCCCAGATCACCCCTGAGCAGAGCAAACGC
AGTACCATGGTCGGAACGCCATACTGGATGGCACCAGAGGTGGTTACACGGAAAGCTTAT
GGCCCTAAAGTCGACATATGGTCTCTGGGTATCATGGCTATTGAGATGGTAGAAGGAGAG
CCTCCATACCTCAATGAAAATCCCTTGAGGGCCTTGTACCTAATAGCAACTAATGGAACC
CCAGAACTTCAGAATCCAGAGAAACTTTCCCCAATATTTCGGGATTTCTTAAATCGATGT
TTGGAAATGGATGTGGAAAAAAGGGGTTCAGCCAAAGAATTATTACAGCATCCTTTCCTG
AAACTGGCCAAACCGTTATCTAGCTTGACACCACTGATCATGGCAGCTAAAGAAGCAATG
AAGAGTAACCGTTAA
Chromosome Location
3
Locus
3q29
External Identifiers
ResourceLink
UniProtKB IDQ13177
UniProtKB Entry NamePAK2_HUMAN
HGNC IDHGNC:8591
General References
  1. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  2. Martin GA, Bollag G, McCormick F, Abo A: A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 1995 May 1;14(9):1970-8. [Article]
  3. Martin GA, Bollag G, McCormick F, Abo A: A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 1995 Sep 1;14(17):4385. [Article]
  4. Benner GE, Dennis PB, Masaracchia RA: Activation of an S6/H4 kinase (PAK 65) from human placenta by intramolecular and intermolecular autophosphorylation. J Biol Chem. 1995 Sep 8;270(36):21121-8. [Article]
  5. Rudel T, Bokoch GM: Membrane and morphological changes in apoptotic cells regulated by caspase-mediated activation of PAK2. Science. 1997 Jun 6;276(5318):1571-4. [Article]
  6. Walter BN, Huang Z, Jakobi R, Tuazon PT, Alnemri ES, Litwack G, Traugh JA: Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J Biol Chem. 1998 Oct 30;273(44):28733-9. [Article]
  7. Arora VK, Molina RP, Foster JL, Blakemore JL, Chernoff J, Fredericksen BL, Garcia JV: Lentivirus Nef specifically activates Pak2. J Virol. 2000 Dec;74(23):11081-7. [Article]
  8. Jakobi R, McCarthy CC, Koeppel MA, Stringer DK: Caspase-activated PAK-2 is regulated by subcellular targeting and proteasomal degradation. J Biol Chem. 2003 Oct 3;278(40):38675-85. Epub 2003 Jul 9. [Article]
  9. Orton KC, Ling J, Waskiewicz AJ, Cooper JA, Merrick WC, Korneeva NL, Rhoads RE, Sonenberg N, Traugh JA: Phosphorylation of Mnk1 by caspase-activated Pak2/gamma-PAK inhibits phosphorylation and interaction of eIF4G with Mnk. J Biol Chem. 2004 Sep 10;279(37):38649-57. Epub 2004 Jul 2. [Article]
  10. Koeppel MA, McCarthy CC, Moertl E, Jakobi R: Identification and characterization of PS-GAP as a novel regulator of caspase-activated PAK-2. J Biol Chem. 2004 Dec 17;279(51):53653-64. Epub 2004 Oct 7. [Article]
  11. Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M: Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006 Nov 3;127(3):635-48. [Article]
  12. Karkkainen S, Hiipakka M, Wang JH, Kleino I, Vaha-Jaakkola M, Renkema GH, Liss M, Wagner R, Saksela K: Identification of preferred protein interactions by phage-display of the human Src homology-3 proteome. EMBO Rep. 2006 Feb;7(2):186-91. [Article]
  13. Vilas GL, Corvi MM, Plummer GJ, Seime AM, Lambkin GR, Berthiaume LG: Posttranslational myristoylation of caspase-activated p21-activated protein kinase 2 (PAK2) potentiates late apoptotic events. Proc Natl Acad Sci U S A. 2006 Apr 25;103(17):6542-7. Epub 2006 Apr 14. [Article]
  14. Nola S, Sebbagh M, Marchetto S, Osmani N, Nourry C, Audebert S, Navarro C, Rachel R, Montcouquiol M, Sans N, Etienne-Manneville S, Borg JP, Santoni MJ: Scrib regulates PAK activity during the cell migration process. Hum Mol Genet. 2008 Nov 15;17(22):3552-65. doi: 10.1093/hmg/ddn248. Epub 2008 Aug 20. [Article]
  15. Zahedi RP, Lewandrowski U, Wiesner J, Wortelkamp S, Moebius J, Schutz C, Walter U, Gambaryan S, Sickmann A: Phosphoproteome of resting human platelets. J Proteome Res. 2008 Feb;7(2):526-34. Epub 2007 Dec 19. [Article]
  16. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  17. Mitsushima M, Toyoshima F, Nishida E: Dual role of Cdc42 in spindle orientation control of adherent cells. Mol Cell Biol. 2009 May;29(10):2816-27. doi: 10.1128/MCB.01713-08. Epub 2009 Mar 9. [Article]
  18. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  19. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 2009 Aug 14;325(5942):834-40. doi: 10.1126/science.1175371. Epub 2009 Jul 16. [Article]
  20. Hsu RM, Tsai MH, Hsieh YJ, Lyu PC, Yu JS: Identification of MYO18A as a novel interacting partner of the PAK2/betaPIX/GIT1 complex and its potential function in modulating epithelial cell migration. Mol Biol Cell. 2010 Jan 15;21(2):287-301. doi: 10.1091/mbc.E09-03-0232. Epub 2009 Nov 18. [Article]
  21. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  22. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  23. Wang J, Wu JW, Wang ZX: Mechanistic studies of the autoactivation of PAK2: a two-step model of cis initiation followed by trans amplification. J Biol Chem. 2011 Jan 28;286(4):2689-95. doi: 10.1074/jbc.M110.156505. Epub 2010 Nov 22. [Article]
  24. De la Mota-Peynado A, Chernoff J, Beeser A: Identification of the atypical MAPK Erk3 as a novel substrate for p21-activated kinase (Pak) activity. J Biol Chem. 2011 Apr 15;286(15):13603-11. doi: 10.1074/jbc.M110.181743. Epub 2011 Feb 11. [Article]
  25. Li T, Zhang J, Zhu F, Wen W, Zykova T, Li X, Liu K, Peng C, Ma W, Shi G, Dong Z, Bode AM, Dong Z: P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation. Carcinogenesis. 2011 May;32(5):659-66. doi: 10.1093/carcin/bgq271. Epub 2010 Dec 22. [Article]
  26. Kang B, Pu M, Hu G, Wen W, Dong Z, Zhao K, Stillman B, Zhang Z: Phosphorylation of H4 Ser 47 promotes HIRA-mediated nucleosome assembly. Genes Dev. 2011 Jul 1;25(13):1359-64. doi: 10.1101/gad.2055511. [Article]
  27. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  28. Bienvenut WV, Sumpton D, Martinez A, Lilla S, Espagne C, Meinnel T, Giglione C: Comparative large scale characterization of plant versus mammal proteins reveals similar and idiosyncratic N-alpha-acetylation features. Mol Cell Proteomics. 2012 Jun;11(6):M111.015131. doi: 10.1074/mcp.M111.015131. Epub 2012 Jan 5. [Article]
  29. Van Damme P, Lasa M, Polevoda B, Gazquez C, Elosegui-Artola A, Kim DS, De Juan-Pardo E, Demeyer K, Hole K, Larrea E, Timmerman E, Prieto J, Arnesen T, Sherman F, Gevaert K, Aldabe R: N-terminal acetylome analyses and functional insights of the N-terminal acetyltransferase NatB. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12449-54. doi: 10.1073/pnas.1210303109. Epub 2012 Jul 18. [Article]
  30. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
  31. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]
  32. Selyunin AS, Sutton SE, Weigele BA, Reddick LE, Orchard RC, Bresson SM, Tomchick DR, Alto NM: The assembly of a GTPase-kinase signalling complex by a bacterial catalytic scaffold. Nature. 2011 Jan 6;469(7328):107-11. doi: 10.1038/nature09593. Epub 2010 Dec 19. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB12010Fostamatinibapproved, investigationalunknowninhibitorDetails