CLIP-associating protein 1

Details

Name
CLIP-associating protein 1
Synonyms
  • Cytoplasmic linker-associated protein 1
  • hOrbit1
  • KIAA0622
  • MAST1
  • Multiple asters homolog 1
  • Protein Orbit homolog 1
Gene Name
CLASP1
Organism
Humans
Amino acid sequence
>lcl|BSEQ0051844|CLIP-associating protein 1
MEPRMESCLAQVLQKDVGKRLQVGQELIDYFSDKQKSADLEHDQTMLDKLVDGLATSWVN
SSNYKVVLLGMDILSALVTRLQDRFKAQIGTVLPSLIDRLGDAKDSVREQDQTLLLKIMD
QAANPQYVWDRMLGGFKHKNFRTREGICLCLIATLNASGAQTLTLSKIVPHICNLLGDPN
SQVRDAAINSLVEIYRHVGERVRADLSKKGLPQSRLNVIFTKFDEVQKSGNMIQSANDKN
FDDEDSVDGNRPSSASSTSSKAPPSSRRNVGMGTTRRLGSSTLGSKSSAAKEGAGAVDEE
DFIKAFDDVPVVQIYSSRDLEESINKIREILSDDKHDWEQRVNALKKIRSLLLAGAAEYD
NFFQHLRLLDGAFKLSAKDLRSQVVREACITLGHLSSVLGNKFDHGAEAIMPTIFNLIPN
SAKIMATSGVVAVRLIIRHTHIPRLIPVITSNCTSKSVAVRRRCFEFLDLLLQEWQTHSL
ERHISVLAETIKKGIHDADSEARIEARKCYWGFHSHFSREAEHLYHTLESSYQKALQSHL
KNSDSIVSLPQSDRSSSSSQESLNRPLSAKRSPTGSTTSRASTVSTKSVSTTGSLQRSRS
DIDVNAAASAKSKVSSSSGTTPFSSAAALPPGSYASLGRIRTRRQSSGSATNVASTPDNR
GRSRAKVVSQSQRSRSANPAGAGSRSSSPGKLLGSGYGGLTGGSSRGPPVTPSSEKRSKI
PRSQGCSRETSPNRIGLARSSRIPRPSMSQGCSRDTSRESSRDTSPARGFPPLDRFGLGQ
PGRIPGSVNAMRVLSTSTDLEAAVADALKKPVRRRYEPYGMYSDDDANSDASSVCSERSY
GSRNGGIPHYLRQTEDVAEVLNHCASSNWSERKEGLLGLQNLLKSQRTLSRVELKRLCEI
FTRMFADPHSKRVFSMFLETLVDFIIIHKDDLQDWLFVLLTQLLKKMGADLLGSVQAKVQ
KALDVTRDSFPFDQQFNILMRFIVDQTQTPNLKVKVAILKYIESLARQMDPTDFVNSSET
RLAVSRIITWTTEPKSSDVRKAAQIVLISLFELNTPEFTMLLGALPKTFQDGATKLLHNH
LKNSSNTSVGSPSNTIGRTPSRHTSSRTSPLTSPTNCSHGGLSPSRLWGWSADGLAKHPP
PFSQPNSIPTAPSHKALRRSYSPSMLDYDTENLNSEEIYSSLRGVTEAIEKFSFRSQEDL
NEPIKRDGKKECDIVSRDGGAASPATEGRGGSEVEGGRTALDNKTSLLNTQPPRAFPGPR
ARDYNPYPYSDAINTYDKTALKEAVFDDDMEQLRDVPIDHSDLVADLLKELSNHNERVEE
RKGALLELLKITREDSLGVWEEHFKTILLLLLETLGDKDHSIRALALRVLREILRNQPAR
FKNYAELTIMKTLEAHKDSHKEVVRAAEEAASTLASSIHPEQCIKVLCPIIQTADYPINL
AAIKMQTKVVERIAKESLLQLLVDIIPGLLQGYDNTESSVRKASVFCLVAIYSVIGEDLK
PHLAQLTGSKMKLLNLYIKRAQTTNSNSSSSSDVSTHS
Number of residues
1538
Molecular Weight
169448.635
Theoretical pI
Not Available
GO Classification
Functions
dystroglycan binding / kinetochore binding / microtubule binding / microtubule plus-end binding
Processes
astral microtubule organization / cell division / ciliary basal body-plasma membrane docking / establishment of epithelial cell polarity / establishment of mitotic spindle localization / establishment of spindle orientation / establishment or maintenance of cell polarity / exit from mitosis / G2/M transition of mitotic cell cycle / Golgi organization / microtubule anchoring / microtubule bundle formation / microtubule cytoskeleton organization / microtubule nucleation / microtubule organizing center organization / mitotic spindle assembly / mitotic spindle organization / negative regulation of microtubule depolymerization / negative regulation of microtubule polymerization or depolymerization / negative regulation of stress fiber assembly / negative regulation of wound healing, spreading of epidermal cells / positive regulation of basement membrane assembly involved in embryonic body morphogenesis / positive regulation of epithelial cell migration / positive regulation of exocytosis / positive regulation of extracellular matrix disassembly / positive regulation of microtubule polymerization / regulation of epithelial to mesenchymal transition / regulation of focal adhesion assembly / regulation of G2/M transition of mitotic cell cycle / regulation of gastrulation / regulation of microtubule cytoskeleton organization / sister chromatid cohesion / vesicle targeting
Components
basal cortex / cell cortex / centrosomal corona / centrosome / condensed chromosome kinetochore / cortical microtubule cytoskeleton / cytoplasmic microtubule / cytosol / extracellular exosome / Golgi apparatus / kinetochore / kinetochore microtubule / membrane / microtubule plus-end / spindle microtubule
General Function
Microtubule plus-end tracking protein that promotes the stabilization of dynamic microtubules. Involved in the nucleation of noncentrosomal microtubules originating from the trans-Golgi network (TGN). Required for the polarization of the cytoplasmic microtubule arrays in migrating cells towards the leading edge of the cell. May act at the cell cortex to enhance the frequency of rescue of depolymerizing microtubules by attaching their plus-ends to cortical platforms composed of ERC1 and PHLDB2. This cortical microtubule stabilizing activity is regulated at least in part by phosphatidylinositol 3-kinase signaling. Also performs a similar stabilizing function at the kinetochore which is essential for the bipolar alignment of chromosomes on the mitotic spindle.
Specific Function
Dystroglycan binding
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Cytoplasm
Gene sequence
>lcl|BSEQ0051845|CLIP-associating protein 1 (CLASP1)
ATGGAGCCTCGCATGGAGTCCTGCCTGGCGCAGGTGTTGCAGAAGGATGTGGGGAAACGA
TTGCAGGTTGGCCAAGAACTGATAGACTATTTCTCAGACAAACAGAAGTCTGCTGACCTT
GAGCATGACCAGACCATGTTAGATAAACTTGTGGATGGACTTGCTACCTCTTGGGTGAAC
TCTAGCAATTACAAGGTGGTTCTGCTGGGCATGGACATCCTGTCCGCCCTGGTGACCCGG
CTGCAGGATCGGTTCAAGGCGCAGATCGGCACAGTGCTGCCAAGTCTAATAGACAGACTA
GGAGATGCTAAAGACTCTGTGAGGGAGCAGGACCAAACTCTGCTGCTAAAGATCATGGAT
CAAGCTGCTAATCCCCAGTACGTATGGGACAGAATGCTTGGAGGCTTCAAACACAAGAAT
TTCCGTACTCGAGAAGGCATCTGTCTCTGCCTTATAGCAACACTCAATGCCTCTGGAGCA
CAGACTTTAACACTAAGCAAGATTGTGCCACATATATGCAACTTACTTGGAGATCCAAAC
AGCCAGGTTCGAGATGCAGCAATAAACAGCTTAGTGGAAATTTACAGACATGTAGGAGAA
CGTGTGAGGGCAGATCTCAGTAAAAAAGGATTGCCACAGTCCCGGTTGAATGTAATTTTT
ACAAAATTTGATGAAGTCCAGAAATCTGGAAACATGATACAATCTGCAAATGATAAAAAT
TTCGACGATGAAGATTCTGTGGATGGTAACAGACCTTCCTCTGCTAGTTCTACATCATCC
AAGGCTCCACCAAGTTCTCGGAGAAACGTTGGAATGGGAACCACCCGCCGGCTTGGTTCA
TCCACCCTTGGATCCAAGTCTTCAGCTGCAAAAGAAGGAGCTGGTGCTGTTGATGAAGAG
GATTTTATTAAAGCATTTGATGATGTACCTGTAGTACAGATTTATTCCAGCCGAGACCTT
GAGGAATCCATAAACAAAATTAGGGAAATATTATCTGATGACAAGCATGATTGGGAGCAG
AGAGTAAATGCTCTAAAAAAGATTAGATCTTTACTTTTGGCTGGTGCTGCTGAGTATGAT
AACTTCTTTCAACATTTGCGTCTTTTGGATGGAGCCTTTAAACTCTCTGCTAAGGACCTG
CGGTCTCAGGTAGTGCGGGAGGCTTGTATCACGTTGGGGCATCTGTCATCAGTTCTGGGG
AATAAGTTTGACCATGGAGCTGAAGCCATTATGCCAACTATCTTTAATTTAATTCCAAAC
AGTGCCAAAATTATGGCCACATCTGGTGTTGTAGCTGTTAGGTTAATTATTCGGCACACA
CACATCCCTAGGTTAATACCTGTCATAACAAGCAACTGTACCTCTAAGTCTGTCGCAGTT
AGAAGGCGCTGTTTTGAATTTTTAGATTTGCTTTTACAAGAATGGCAGACACATTCACTA
GAACGACACATATCAGTATTAGCTGAAACAATAAAGAAGGGAATACATGATGCTGATTCC
GAAGCAAGAATAGAAGCCAGAAAATGTTACTGGGGTTTCCACAGTCACTTCAGCAGAGAA
GCAGAGCACTTGTACCACACCTTGGAGTCCTCCTACCAGAAAGCCCTGCAGTCCCACCTG
AAGAACTCAGACAGCATAGTGTCTCTGCCTCAGTCAGACCGCTCATCTTCCAGCTCTCAA
GAGAGTCTAAATCGTCCGCTGTCTGCCAAAAGAAGTCCTACTGGAAGTACCACATCTAGA
GCTTCTACAGTTAGTACCAAATCTGTGTCAACGACTGGGTCCCTCCAGCGATCTCGAAGT
GATATTGATGTGAACGCAGCAGCCAGTGCCAAATCCAAAGTCTCCTCATCTTCGGGCACG
ACGCCTTTCAGCTCTGCAGCAGCTTTGCCTCCAGGGTCATACGCATCCTTAGGTCGGATC
CGCACAAGACGGCAAAGCTCTGGGAGTGCCACCAACGTCGCCTCTACACCTGATAACCGG
GGCCGCAGTCGCGCTAAAGTGGTTTCACAGTCCCAGCGATCCAGATCTGCTAATCCTGCT
GGTGCTGGCAGCCGGTCAAGTTCCCCAGGAAAATTGTTGGGAAGTGGTTATGGTGGACTT
ACTGGGGGCTCCTCACGAGGCCCACCTGTGACACCGTCTTCAGAAAAGCGAAGCAAGATT
CCCAGGAGCCAGGGATGTAGCCGGGAAACAAGTCCAAACCGAATAGGATTAGCACGGAGC
AGCCGTATCCCTCGACCCAGCATGAGTCAGGGGTGCAGCCGCGATACCAGCCGTGAGAGC
AGCCGAGATACAAGCCCTGCTCGGGGCTTTCCTCCACTTGATCGGTTTGGGCTTGGCCAG
CCAGGAAGAATACCTGGTTCTGTGAATGCCATGAGAGTTCTGAGCACAAGTACAGATCTT
GAAGCTGCTGTTGCTGATGCTTTGAAGAAGCCTGTGAGGAGGAGATATGAGCCGTATGGG
ATGTATTCTGACGATGATGCCAACAGTGATGCCTCAAGTGTTTGCTCTGAGCGCTCATAT
GGCTCCAGGAATGGTGGCATTCCCCATTATCTGCGGCAGACTGAGGATGTAGCAGAAGTT
CTCAACCACTGTGCTAGTTCAAACTGGTCAGAAAGGAAAGAAGGGCTTCTGGGCCTGCAG
AACTTACTGAAGAGCCAAAGAACACTGAGTCGAGTTGAACTGAAAAGGTTGTGTGAGATC
TTCACTCGGATGTTTGCTGACCCTCATAGCAAGAGAGTTTTCAGTATGTTTTTGGAGACT
CTTGTGGATTTTATAATAATTCATAAGGATGATTTACAAGACTGGCTTTTTGTTCTTCTC
ACACAATTACTTAAGAAAATGGGAGCAGATTTACTTGGATCTGTGCAAGCAAAAGTTCAA
AAGGCTCTAGATGTCACAAGGGACTCCTTTCCATTTGATCAACAATTTAACATTTTGATG
AGATTTATTGTGGATCAAACTCAAACTCCAAACCTCAAGGTCAAAGTTGCAATCCTGAAA
TACATTGAGTCTCTGGCCAGACAGATGGATCCAACAGATTTTGTAAACTCTAGTGAGACA
AGGCTTGCTGTTTCTAGAATCATAACCTGGACAACAGAACCAAAGAGTTCAGACGTGAGA
AAGGCAGCACAGATTGTGCTAATCTCTCTGTTTGAATTGAATACTCCTGAATTTACCATG
TTACTTGGTGCCTTGCCAAAAACATTCCAGGATGGTGCCACCAAACTCCTGCACAACCAC
CTCAAGAATTCCAGTAACACCAGTGTGGGCTCTCCAAGCAATACGATTGGCCGGACGCCC
TCCCGACACACCAGCAGCAGGACCAGCCCCCTGACCTCACCCACCAACTGTTCCCATGGG
GGTCTGTCTCCAAGTCGGTTATGGGGTTGGAGTGCCGACGGGTTAGCGAAGCACCCACCT
CCCTTTTCTCAGCCTAACTCCATCCCCACCGCTCCCTCCCACAAGGCTCTCAGGCGCTCT
TACTCTCCCAGCATGCTGGACTATGATACAGAGAACCTGAACTCTGAAGAAATCTATAGT
TCTCTACGTGGAGTTACAGAAGCCATTGAAAAGTTTAGTTTTCGAAGCCAAGAAGATCTG
AATGAGCCAATTAAACGAGATGGCAAAAAGGAGTGTGATATTGTGTCCCGCGATGGGGGC
GCTGCCTCCCCTGCCACTGAGGGCCGGGGGGGTAGTGAAGTAGAAGGAGGCCGGACAGCT
CTGGATAACAAGACCTCACTACTCAACACCCAGCCTCCGCGCGCCTTCCCGGGGCCGCGG
GCGCGAGACTACAACCCGTACCCCTACTCAGATGCCATCAACACCTACGACAAGACCGCC
CTGAAAGAGGCTGTGTTCGATGACGACATGGAGCAGCTTCGAGACGTGCCCATCGACCAT
TCTGACCTGGTGGCTGACCTTCTGAAAGAGCTGTCCAACCACAATGAGCGAGTGGAGGAA
CGGAAGGGAGCCCTGCTGGAGCTGCTCAAGATCACGCGGGAAGACAGCCTTGGTGTCTGG
GAGGAGCACTTCAAGACCATTCTGCTCCTGCTGCTGGAGACCCTTGGAGACAAAGACCAT
TCAATTCGAGCACTGGCGTTAAGAGTTTTGAGGGAAATTCTGAGAAATCAACCAGCAAGA
TTTAAAAACTACGCCGAGCTGACGATTATGAAGACTCTGGAAGCCCACAAAGACTCCCAT
AAGGAGGTGGTGAGAGCGGCTGAGGAGGCTGCGTCCACACTGGCCAGTTCCATCCACCCG
GAGCAGTGCATCAAGGTGCTCTGCCCCATCATCCAGACGGCCGACTACCCCATCAACCTT
GCTGCCATCAAGATGCAGACCAAAGTCGTCGAGAGGATCGCAAAGGAGTCATTGCTGCAG
CTCCTTGTCGACATCATCCCAGGCTTGCTGCAGGGTTATGACAACACCGAAAGTAGTGTG
CGTAAGGCCAGCGTGTTTTGCTTAGTGGCAATTTATTCCGTAATCGGAGAAGACCTGAAA
CCTCACCTTGCACAGCTCACAGGGAGCAAGATGAAGCTACTAAACTTATACATAAAGAGG
GCCCAGACCACCAACAGCAACAGCAGCTCCTCCTCCGATGTCTCCACGCACAGCTAA
Chromosome Location
2
Locus
2q14.2-q14.3
External Identifiers
ResourceLink
UniProtKB IDQ7Z460
UniProtKB Entry NameCLAP1_HUMAN
HGNC IDHGNC:17088
General References
  1. Hillier LW, Graves TA, Fulton RS, Fulton LA, Pepin KH, Minx P, Wagner-McPherson C, Layman D, Wylie K, Sekhon M, Becker MC, Fewell GA, Delehaunty KD, Miner TL, Nash WE, Kremitzki C, Oddy L, Du H, Sun H, Bradshaw-Cordum H, Ali J, Carter J, Cordes M, Harris A, Isak A, van Brunt A, Nguyen C, Du F, Courtney L, Kalicki J, Ozersky P, Abbott S, Armstrong J, Belter EA, Caruso L, Cedroni M, Cotton M, Davidson T, Desai A, Elliott G, Erb T, Fronick C, Gaige T, Haakenson W, Haglund K, Holmes A, Harkins R, Kim K, Kruchowski SS, Strong CM, Grewal N, Goyea E, Hou S, Levy A, Martinka S, Mead K, McLellan MD, Meyer R, Randall-Maher J, Tomlinson C, Dauphin-Kohlberg S, Kozlowicz-Reilly A, Shah N, Swearengen-Shahid S, Snider J, Strong JT, Thompson J, Yoakum M, Leonard S, Pearman C, Trani L, Radionenko M, Waligorski JE, Wang C, Rock SM, Tin-Wollam AM, Maupin R, Latreille P, Wendl MC, Yang SP, Pohl C, Wallis JW, Spieth J, Bieri TA, Berkowicz N, Nelson JO, Osborne J, Ding L, Meyer R, Sabo A, Shotland Y, Sinha P, Wohldmann PE, Cook LL, Hickenbotham MT, Eldred J, Williams D, Jones TA, She X, Ciccarelli FD, Izaurralde E, Taylor J, Schmutz J, Myers RM, Cox DR, Huang X, McPherson JD, Mardis ER, Clifton SW, Warren WC, Chinwalla AT, Eddy SR, Marra MA, Ovcharenko I, Furey TS, Miller W, Eichler EE, Bork P, Suyama M, Torrents D, Waterston RH, Wilson RK: Generation and annotation of the DNA sequences of human chromosomes 2 and 4. Nature. 2005 Apr 7;434(7034):724-31. [Article]
  2. Gerhard DS, Wagner L, Feingold EA, Shenmen CM, Grouse LH, Schuler G, Klein SL, Old S, Rasooly R, Good P, Guyer M, Peck AM, Derge JG, Lipman D, Collins FS, Jang W, Sherry S, Feolo M, Misquitta L, Lee E, Rotmistrovsky K, Greenhut SF, Schaefer CF, Buetow K, Bonner TI, Haussler D, Kent J, Kiekhaus M, Furey T, Brent M, Prange C, Schreiber K, Shapiro N, Bhat NK, Hopkins RF, Hsie F, Driscoll T, Soares MB, Casavant TL, Scheetz TE, Brown-stein MJ, Usdin TB, Toshiyuki S, Carninci P, Piao Y, Dudekula DB, Ko MS, Kawakami K, Suzuki Y, Sugano S, Gruber CE, Smith MR, Simmons B, Moore T, Waterman R, Johnson SL, Ruan Y, Wei CL, Mathavan S, Gunaratne PH, Wu J, Garcia AM, Hulyk SW, Fuh E, Yuan Y, Sneed A, Kowis C, Hodgson A, Muzny DM, McPherson J, Gibbs RA, Fahey J, Helton E, Ketteman M, Madan A, Rodrigues S, Sanchez A, Whiting M, Madari A, Young AC, Wetherby KD, Granite SJ, Kwong PN, Brinkley CP, Pearson RL, Bouffard GG, Blakesly RW, Green ED, Dickson MC, Rodriguez AC, Grimwood J, Schmutz J, Myers RM, Butterfield YS, Griffith M, Griffith OL, Krzywinski MI, Liao N, Morin R, Palmquist D, Petrescu AS, Skalska U, Smailus DE, Stott JM, Schnerch A, Schein JE, Jones SJ, Holt RA, Baross A, Marra MA, Clifton S, Makowski KA, Bosak S, Malek J: The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC). Genome Res. 2004 Oct;14(10B):2121-7. [Article]
  3. Akhmanova A, Hoogenraad CC, Drabek K, Stepanova T, Dortland B, Verkerk T, Vermeulen W, Burgering BM, De Zeeuw CI, Grosveld F, Galjart N: Clasps are CLIP-115 and -170 associating proteins involved in the regional regulation of microtubule dynamics in motile fibroblasts. Cell. 2001 Mar 23;104(6):923-35. [Article]
  4. Bechtel S, Rosenfelder H, Duda A, Schmidt CP, Ernst U, Wellenreuther R, Mehrle A, Schuster C, Bahr A, Blocker H, Heubner D, Hoerlein A, Michel G, Wedler H, Kohrer K, Ottenwalder B, Poustka A, Wiemann S, Schupp I: The full-ORF clone resource of the German cDNA Consortium. BMC Genomics. 2007 Oct 31;8:399. [Article]
  5. Ishikawa K, Nagase T, Suyama M, Miyajima N, Tanaka A, Kotani H, Nomura N, Ohara O: Prediction of the coding sequences of unidentified human genes. X. The complete sequences of 100 new cDNA clones from brain which can code for large proteins in vitro. DNA Res. 1998 Jun 30;5(3):169-76. [Article]
  6. Maiato H, Fairley EA, Rieder CL, Swedlow JR, Sunkel CE, Earnshaw WC: Human CLASP1 is an outer kinetochore component that regulates spindle microtubule dynamics. Cell. 2003 Jun 27;113(7):891-904. [Article]
  7. Aonuma M, Miyamoto M, Inoue YH, Tamai K, Sakai H, Kamasawa N, Matsukage A: Microtubule bundle formation and cell death induced by the human CLASP/Orbit N-terminal fragment. Cell Struct Funct. 2005;30(1):7-13. [Article]
  8. Mimori-Kiyosue Y, Grigoriev I, Lansbergen G, Sasaki H, Matsui C, Severin F, Galjart N, Grosveld F, Vorobjev I, Tsukita S, Akhmanova A: CLASP1 and CLASP2 bind to EB1 and regulate microtubule plus-end dynamics at the cell cortex. J Cell Biol. 2005 Jan 3;168(1):141-53. doi: 10.1083/jcb.200405094. [Article]
  9. Lansbergen G, Grigoriev I, Mimori-Kiyosue Y, Ohtsuka T, Higa S, Kitajima I, Demmers J, Galjart N, Houtsmuller AB, Grosveld F, Akhmanova A: CLASPs attach microtubule plus ends to the cell cortex through a complex with LL5beta. Dev Cell. 2006 Jul;11(1):21-32. doi: 10.1016/j.devcel.2006.05.012. [Article]
  10. Mimori-Kiyosue Y, Grigoriev I, Sasaki H, Matsui C, Akhmanova A, Tsukita S, Vorobjev I: Mammalian CLASPs are required for mitotic spindle organization and kinetochore alignment. Genes Cells. 2006 Aug;11(8):845-57. doi: 10.1111/j.1365-2443.2006.00990.x. [Article]
  11. Pereira AL, Pereira AJ, Maia AR, Drabek K, Sayas CL, Hergert PJ, Lince-Faria M, Matos I, Duque C, Stepanova T, Rieder CL, Earnshaw WC, Galjart N, Maiato H: Mammalian CLASP1 and CLASP2 cooperate to ensure mitotic fidelity by regulating spindle and kinetochore function. Mol Biol Cell. 2006 Oct;17(10):4526-42. doi: 10.1091/mbc.E06-07-0579. Epub 2006 Aug 16. [Article]
  12. Efimov A, Kharitonov A, Efimova N, Loncarek J, Miller PM, Andreyeva N, Gleeson P, Galjart N, Maia AR, McLeod IX, Yates JR 3rd, Maiato H, Khodjakov A, Akhmanova A, Kaverina I: Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network. Dev Cell. 2007 Jun;12(6):917-30. doi: 10.1016/j.devcel.2007.04.002. [Article]
  13. Cantin GT, Yi W, Lu B, Park SK, Xu T, Lee JD, Yates JR 3rd: Combining protein-based IMAC, peptide-based IMAC, and MudPIT for efficient phosphoproteomic analysis. J Proteome Res. 2008 Mar;7(3):1346-51. doi: 10.1021/pr0705441. Epub 2008 Jan 26. [Article]
  14. Zahedi RP, Lewandrowski U, Wiesner J, Wortelkamp S, Moebius J, Schutz C, Walter U, Gambaryan S, Sickmann A: Phosphoproteome of resting human platelets. J Proteome Res. 2008 Feb;7(2):526-34. Epub 2007 Dec 19. [Article]
  15. Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP: A quantitative atlas of mitotic phosphorylation. Proc Natl Acad Sci U S A. 2008 Aug 5;105(31):10762-7. doi: 10.1073/pnas.0805139105. Epub 2008 Jul 31. [Article]
  16. Gauci S, Helbig AO, Slijper M, Krijgsveld J, Heck AJ, Mohammed S: Lys-N and trypsin cover complementary parts of the phosphoproteome in a refined SCX-based approach. Anal Chem. 2009 Jun 1;81(11):4493-501. doi: 10.1021/ac9004309. [Article]
  17. Mayya V, Lundgren DH, Hwang SI, Rezaul K, Wu L, Eng JK, Rodionov V, Han DK: Quantitative phosphoproteomic analysis of T cell receptor signaling reveals system-wide modulation of protein-protein interactions. Sci Signal. 2009 Aug 18;2(84):ra46. doi: 10.1126/scisignal.2000007. [Article]
  18. Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M: Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci Signal. 2010 Jan 12;3(104):ra3. doi: 10.1126/scisignal.2000475. [Article]
  19. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, Superti-Furga G, Colinge J: Initial characterization of the human central proteome. BMC Syst Biol. 2011 Jan 26;5:17. doi: 10.1186/1752-0509-5-17. [Article]
  20. Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B: System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci Signal. 2011 Mar 15;4(164):rs3. doi: 10.1126/scisignal.2001570. [Article]
  21. Zhou H, Di Palma S, Preisinger C, Peng M, Polat AN, Heck AJ, Mohammed S: Toward a comprehensive characterization of a human cancer cell phosphoproteome. J Proteome Res. 2013 Jan 4;12(1):260-71. doi: 10.1021/pr300630k. Epub 2012 Dec 18. [Article]
  22. Bian Y, Song C, Cheng K, Dong M, Wang F, Huang J, Sun D, Wang L, Ye M, Zou H: An enzyme assisted RP-RPLC approach for in-depth analysis of human liver phosphoproteome. J Proteomics. 2014 Jan 16;96:253-62. doi: 10.1016/j.jprot.2013.11.014. Epub 2013 Nov 22. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB12010Fostamatinibapproved, investigationalunknowninhibitorDetails