Tesmilifene
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- Tesmilifene
- DrugBank Accession Number
- DB04905
- Background
Tesmilifene is a novel potentiator of chemotherapy which, when added to doxorubicin, achieved an unexpected and very large survival advantage over doxorubicin alone in a randomized trial in advanced breast cancer.
- Type
- Small Molecule
- Groups
- Investigational
- Structure
- Weight
- Average: 283.4079
Monoisotopic: 283.193614427 - Chemical Formula
- C19H25NO
- Synonyms
- N,N-diethyl-2-((4-phenylmethyl)phenoxy)ethanamine
- Tesmilifene
Pharmacology
- Indication
Intended for the treatment of various forms of cancer.
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Not Available
- Mechanism of action
Although the exact mechanism of action is not known, one study (PMID: 16413681) proposes that tesmilifene may be an activating p-gp substrate, which enables the p-gp pump to extrude typical p-gp substrates (such as anthracyclines or taxanes) more efficiently. This process consumes ATP, since the p-gp is absolutely, and highly dependent on ATP hydrolysis. The mechanism of cell death is likely to result not from the presence of chemotherapy inside the cell (in fact the chemotherapy is extruded) but, directly or indirectly, from the enhanced consumption of ATP. The ATP may be consumed below a threshold necessary for survival, or, (more likely) the enhanced ATP production required to maintain ATP levels may result in the generation of reactive oxygen species (ROS) to an extent that overwhelms the cell’s ability to inactivate them. The result would be additional cell death, but only in the mdr+ population. The doxorubicin would continue to act on the drug sensitive remainder of the cell population, but without the help of tesmilifene.
Target Actions Organism AATP-dependent translocase ABCB1 inducerHumans UHistamine H1 receptor antagonistHumans - Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
Hepatic
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Not Available
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAbametapir The serum concentration of Tesmilifene can be increased when it is combined with Abametapir. Abatacept The metabolism of Tesmilifene can be increased when combined with Abatacept. Abciximab The risk or severity of bleeding can be increased when Tesmilifene is combined with Abciximab. Abemaciclib The metabolism of Abemaciclib can be increased when combined with Tesmilifene. Abiraterone The metabolism of Tesmilifene can be decreased when combined with Abiraterone. - Food Interactions
- Not Available
Products
- Drug product information from 10+ global regionsOur datasets provide approved product information including:dosage, form, labeller, route of administration, and marketing period.Access drug product information from over 10 global regions.
- Product Ingredients
Ingredient UNII CAS InChI Key Tesmilifene hydrochloride 1U4B477260 92981-78-7 TXLHNFOLHRXMAU-UHFFFAOYSA-N
Categories
- Drug Categories
- Antiplatelet agents
- Benzene Derivatives
- Cytochrome P-450 CYP2D6 Substrates
- Cytochrome P-450 CYP3A Inducers
- Cytochrome P-450 CYP3A Inhibitors
- Cytochrome P-450 CYP3A Substrates
- Cytochrome P-450 CYP3A4 Inducers
- Cytochrome P-450 CYP3A4 Inducers (strength unknown)
- Cytochrome P-450 CYP3A4 Inhibitors
- Cytochrome P-450 CYP3A4 Inhibitors (strength unknown)
- Cytochrome P-450 CYP3A4 Substrates
- Cytochrome P-450 Enzyme Inducers
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Substrates
- Ethers
- Hematologic Agents
- Histamine Agents
- Neurotransmitter Agents
- P-glycoprotein inducers
- P-glycoprotein inhibitors
- Phenols
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as diphenylmethanes. These are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups.
- Kingdom
- Organic compounds
- Super Class
- Benzenoids
- Class
- Benzene and substituted derivatives
- Sub Class
- Diphenylmethanes
- Direct Parent
- Diphenylmethanes
- Alternative Parents
- Phenoxy compounds / Phenol ethers / Alkyl aryl ethers / Trialkylamines / Organopnictogen compounds / Hydrocarbon derivatives
- Substituents
- Alkyl aryl ether / Amine / Aromatic homomonocyclic compound / Diphenylmethane / Ether / Hydrocarbon derivative / Organic nitrogen compound / Organic oxygen compound / Organonitrogen compound / Organooxygen compound
- Molecular Framework
- Aromatic homomonocyclic compounds
- External Descriptors
- Not Available
- Affected organisms
- Humans and other mammals
Chemical Identifiers
- UNII
- I43T3ID6G2
- CAS number
- 98774-23-3
- InChI Key
- NFIXBCVWIPOYCD-UHFFFAOYSA-N
- InChI
- InChI=1S/C19H25NO/c1-3-20(4-2)14-15-21-19-12-10-18(11-13-19)16-17-8-6-5-7-9-17/h5-13H,3-4,14-16H2,1-2H3
- IUPAC Name
- [2-(4-benzylphenoxy)ethyl]diethylamine
- SMILES
- CCN(CC)CCOC1=CC=C(CC2=CC=CC=C2)C=C1
References
- General References
- Liu J, Tu D, Dancey J, Reyno L, Pritchard KI, Pater J, Seymour LK: Quality of life analyses in a clinical trial of DPPE (tesmilifene) plus doxorubicin versus doxorubicin in patients with advanced or metastatic breast cancer: NCIC CTG Trial MA.19. Breast Cancer Res Treat. 2006 Dec;100(3):263-71. Epub 2006 Jul 6. [Article]
- Vincent M: Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Med Hypotheses. 2006;66(4):715-31. Epub 2006 Jan 18. [Article]
- Raghavan D, Brandes LJ, Klapp K, Snyder T, Styles E, Tsao-Wei D, Lieskovsky G, Quinn DI, Ramsey EW: Phase II trial of tesmilifene plus mitoxantrone and prednisone for hormone refractory prostate cancer: high subjective and objective response in patients with symptomatic metastases. J Urol. 2005 Nov;174(5):1808-13; discussion 1813. [Article]
- Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
- Brandes LJ, Hogg GR: Study of the in-vivo antioestrogenic action of N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine HCl (DPPE), a novel intracellular histamine antagonist and antioestrogen binding site ligand. J Reprod Fertil. 1990 May;89(1):59-67. [Article]
- External Links
- PubChem Compound
- 108092
- PubChem Substance
- 175426896
- ChemSpider
- 97190
- BindingDB
- 50085260
- ChEBI
- 93414
- ChEMBL
- CHEMBL26424
- ZINC
- ZINC000000002139
- Wikipedia
- Tesmilifene
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data2 Completed Treatment Metastatic Breast Cancer 1 somestatus stop reason just information to hide 1 Completed Treatment Metastatic/Recurrent Breast Cancer 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.00905 mg/mL ALOGPS logP 4.65 ALOGPS logP 4.64 Chemaxon logS -4.5 ALOGPS pKa (Strongest Basic) 9.33 Chemaxon Physiological Charge 1 Chemaxon Hydrogen Acceptor Count 2 Chemaxon Hydrogen Donor Count 0 Chemaxon Polar Surface Area 12.47 Å2 Chemaxon Rotatable Bond Count 8 Chemaxon Refractivity 89.77 m3·mol-1 Chemaxon Polarizability 33.95 Å3 Chemaxon Number of Rings 2 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule Yes Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 0.9935 Blood Brain Barrier + 0.9482 Caco-2 permeable + 0.8072 P-glycoprotein substrate Substrate 0.7041 P-glycoprotein inhibitor I Inhibitor 0.5341 P-glycoprotein inhibitor II Non-inhibitor 0.885 Renal organic cation transporter Inhibitor 0.7133 CYP450 2C9 substrate Non-substrate 0.7941 CYP450 2D6 substrate Substrate 0.6482 CYP450 3A4 substrate Substrate 0.5967 CYP450 1A2 substrate Inhibitor 0.9707 CYP450 2C9 inhibitor Inhibitor 0.5636 CYP450 2D6 inhibitor Inhibitor 0.9575 CYP450 2C19 inhibitor Inhibitor 0.6944 CYP450 3A4 inhibitor Non-inhibitor 0.8309 CYP450 inhibitory promiscuity High CYP Inhibitory Promiscuity 0.8296 Ames test Non AMES toxic 0.5749 Carcinogenicity Non-carcinogens 0.657 Biodegradation Not ready biodegradable 0.9877 Rat acute toxicity 2.2808 LD50, mol/kg Not applicable hERG inhibition (predictor I) Strong inhibitor 0.7258 hERG inhibition (predictor II) Inhibitor 0.8407
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS splash10-0f89-1790000000-e45616878dde7749104c Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS splash10-0f89-9410000000-c0472932a2f3cac6d552 Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS splash10-001i-0190000000-73025847d44a8a8d74d2 Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS splash10-008c-9400000000-ef3c321bf6dc3931b5f0 Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS splash10-001i-2910000000-fc3e03bc450ca2a74387 Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS splash10-00lr-1900000000-28cc3d2b9edeeba08cac Predicted 1H NMR Spectrum 1D NMR Not Applicable Predicted 13C NMR Spectrum 1D NMR Not Applicable - Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 185.0617415 predictedDarkChem Lite v0.1.0 [M-H]- 168.5848 predictedDeepCCS 1.0 (2019) [M+H]+ 185.3479415 predictedDarkChem Lite v0.1.0 [M+H]+ 170.9428 predictedDeepCCS 1.0 (2019) [M+Na]+ 185.2129415 predictedDarkChem Lite v0.1.0 [M+Na]+ 177.03593 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Inducer
- General Function
- Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
- Specific Function
- ABC-type xenobiotic transporter activity
- Gene Name
- ABCB1
- Uniprot ID
- P08183
- Uniprot Name
- ATP-dependent translocase ABCB1
- Molecular Weight
- 141477.255 Da
References
- Vincent M: Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Med Hypotheses. 2006;66(4):715-31. Epub 2006 Jan 18. [Article]
- Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Antagonist
- General Function
- G-protein-coupled receptor for histamine, a biogenic amine that functions as an immune modulator and a neurotransmitter (PubMed:33828102, PubMed:8280179). Through the H1 receptor, histamine mediates the contraction of smooth muscles and increases capillary permeability due to contraction of terminal venules. Also mediates neurotransmission in the central nervous system and thereby regulates circadian rhythms, emotional and locomotor activities as well as cognitive functions (By similarity)
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HRH1
- Uniprot ID
- P35367
- Uniprot Name
- Histamine H1 receptor
- Molecular Weight
- 55783.61 Da
References
- Brandes LJ, Bogdanovic RP, Cawker MD, LaBella FS: Histamine and growth: interaction of antiestrogen binding site ligands with a novel histamine site that may be associated with calcium channels. Cancer Res. 1987 Aug 1;47(15):4025-31. [Article]
Enzymes
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- SubstrateInhibitorInducer
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
- Gene Name
- CYP3A4
- Uniprot ID
- P08684
- Uniprot Name
- Cytochrome P450 3A4
- Molecular Weight
- 57342.67 Da
References
- Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
- Specific Function
- anandamide 11,12 epoxidase activity
- Gene Name
- CYP2D6
- Uniprot ID
- P10635
- Uniprot Name
- Cytochrome P450 2D6
- Molecular Weight
- 55768.94 Da
References
- Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C15-alpha and C16-alpha positions (PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15805301). Displays different regioselectivities for polyunsaturated fatty acids (PUFA) hydroxylation (PubMed:15041462, PubMed:18577768). Catalyzes the epoxidation of double bonds of certain PUFA (PubMed:15041462, PubMed:19965576, PubMed:20972997). Converts arachidonic acid toward epoxyeicosatrienoic acid (EET) regioisomers, 8,9-, 11,12-, and 14,15-EET, that function as lipid mediators in the vascular system (PubMed:20972997). Displays an absolute stereoselectivity in the epoxidation of eicosapentaenoic acid (EPA) producing the 17(R),18(S) enantiomer (PubMed:15041462). May play an important role in all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195)
- Specific Function
- arachidonic acid monooxygenase activity
- Gene Name
- CYP1A1
- Uniprot ID
- P04798
- Uniprot Name
- Cytochrome P450 1A1
- Molecular Weight
- 58164.815 Da
References
- Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
Drug created at October 21, 2007 22:23 / Updated at February 21, 2021 18:51