Tesmilifene

Identification

Generic Name
Tesmilifene
DrugBank Accession Number
DB04905
Background

Tesmilifene is a novel potentiator of chemotherapy which, when added to doxorubicin, achieved an unexpected and very large survival advantage over doxorubicin alone in a randomized trial in advanced breast cancer.

Type
Small Molecule
Groups
Investigational
Structure
Weight
Average: 283.4079
Monoisotopic: 283.193614427
Chemical Formula
C19H25NO
Synonyms
  • N,N-diethyl-2-((4-phenylmethyl)phenoxy)ethanamine
  • Tesmilifene

Pharmacology

Indication

Intended for the treatment of various forms of cancer.

Reduce drug development failure rates
Build, train, & validate machine-learning models
with evidence-based and structured datasets.
See how
Build, train, & validate predictive machine-learning models with structured datasets.
See how
Contraindications & Blackbox Warnings
Prevent Adverse Drug Events Today
Tap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.
Learn more
Avoid life-threatening adverse drug events with our Clinical API
Learn more
Pharmacodynamics

Not Available

Mechanism of action

Although the exact mechanism of action is not known, one study (PMID: 16413681) proposes that tesmilifene may be an activating p-gp substrate, which enables the p-gp pump to extrude typical p-gp substrates (such as anthracyclines or taxanes) more efficiently. This process consumes ATP, since the p-gp is absolutely, and highly dependent on ATP hydrolysis. The mechanism of cell death is likely to result not from the presence of chemotherapy inside the cell (in fact the chemotherapy is extruded) but, directly or indirectly, from the enhanced consumption of ATP. The ATP may be consumed below a threshold necessary for survival, or, (more likely) the enhanced ATP production required to maintain ATP levels may result in the generation of reactive oxygen species (ROS) to an extent that overwhelms the cell’s ability to inactivate them. The result would be additional cell death, but only in the mdr+ population. The doxorubicin would continue to act on the drug sensitive remainder of the cell population, but without the help of tesmilifene.

TargetActionsOrganism
AATP-dependent translocase ABCB1
inducer
Humans
UHistamine H1 receptor
antagonist
Humans
Absorption

Not Available

Volume of distribution

Not Available

Protein binding

Not Available

Metabolism

Hepatic

Route of elimination

Not Available

Half-life

Not Available

Clearance

Not Available

Adverse Effects
Improve decision support & research outcomes
With structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!
See the data
Improve decision support & research outcomes with our structured adverse effects data.
See a data sample
Toxicity

Not Available

Pathways
Not Available
Pharmacogenomic Effects/ADRs
Not Available

Interactions

Drug Interactions
This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
DrugInteraction
AbametapirThe serum concentration of Tesmilifene can be increased when it is combined with Abametapir.
AbataceptThe metabolism of Tesmilifene can be increased when combined with Abatacept.
AbciximabThe risk or severity of bleeding can be increased when Tesmilifene is combined with Abciximab.
AbemaciclibThe metabolism of Abemaciclib can be increased when combined with Tesmilifene.
AbirateroneThe metabolism of Tesmilifene can be decreased when combined with Abiraterone.
Food Interactions
Not Available

Products

Drug product information from 10+ global regions
Our datasets provide approved product information including:
dosage, form, labeller, route of administration, and marketing period.
Access now
Access drug product information from over 10 global regions.
Access now
Product Ingredients
IngredientUNIICASInChI Key
Tesmilifene hydrochloride1U4B47726092981-78-7TXLHNFOLHRXMAU-UHFFFAOYSA-N

Categories

Drug Categories
Chemical TaxonomyProvided by Classyfire
Description
This compound belongs to the class of organic compounds known as diphenylmethanes. These are compounds containing a diphenylmethane moiety, which consists of a methane wherein two hydrogen atoms are replaced by two phenyl groups.
Kingdom
Organic compounds
Super Class
Benzenoids
Class
Benzene and substituted derivatives
Sub Class
Diphenylmethanes
Direct Parent
Diphenylmethanes
Alternative Parents
Phenoxy compounds / Phenol ethers / Alkyl aryl ethers / Trialkylamines / Organopnictogen compounds / Hydrocarbon derivatives
Substituents
Alkyl aryl ether / Amine / Aromatic homomonocyclic compound / Diphenylmethane / Ether / Hydrocarbon derivative / Organic nitrogen compound / Organic oxygen compound / Organonitrogen compound / Organooxygen compound
Molecular Framework
Aromatic homomonocyclic compounds
External Descriptors
Not Available
Affected organisms
  • Humans and other mammals

Chemical Identifiers

UNII
I43T3ID6G2
CAS number
98774-23-3
InChI Key
NFIXBCVWIPOYCD-UHFFFAOYSA-N
InChI
InChI=1S/C19H25NO/c1-3-20(4-2)14-15-21-19-12-10-18(11-13-19)16-17-8-6-5-7-9-17/h5-13H,3-4,14-16H2,1-2H3
IUPAC Name
[2-(4-benzylphenoxy)ethyl]diethylamine
SMILES
CCN(CC)CCOC1=CC=C(CC2=CC=CC=C2)C=C1

References

General References
  1. Liu J, Tu D, Dancey J, Reyno L, Pritchard KI, Pater J, Seymour LK: Quality of life analyses in a clinical trial of DPPE (tesmilifene) plus doxorubicin versus doxorubicin in patients with advanced or metastatic breast cancer: NCIC CTG Trial MA.19. Breast Cancer Res Treat. 2006 Dec;100(3):263-71. Epub 2006 Jul 6. [Article]
  2. Vincent M: Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Med Hypotheses. 2006;66(4):715-31. Epub 2006 Jan 18. [Article]
  3. Raghavan D, Brandes LJ, Klapp K, Snyder T, Styles E, Tsao-Wei D, Lieskovsky G, Quinn DI, Ramsey EW: Phase II trial of tesmilifene plus mitoxantrone and prednisone for hormone refractory prostate cancer: high subjective and objective response in patients with symptomatic metastases. J Urol. 2005 Nov;174(5):1808-13; discussion 1813. [Article]
  4. Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
  5. Brandes LJ, Hogg GR: Study of the in-vivo antioestrogenic action of N,N-diethyl-2-[4-(phenylmethyl)phenoxy]ethanamine HCl (DPPE), a novel intracellular histamine antagonist and antioestrogen binding site ligand. J Reprod Fertil. 1990 May;89(1):59-67. [Article]
PubChem Compound
108092
PubChem Substance
175426896
ChemSpider
97190
BindingDB
50085260
ChEBI
93414
ChEMBL
CHEMBL26424
ZINC
ZINC000000002139
Wikipedia
Tesmilifene

Clinical Trials

Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package
PhaseStatusPurposeConditionsCountStart DateWhy Stopped100+ additional columns
2CompletedTreatmentMetastatic Breast Cancer1somestatusstop reasonjust information to hide
1CompletedTreatmentMetastatic/Recurrent Breast Cancer1somestatusstop reasonjust information to hide

Pharmacoeconomics

Manufacturers
Not Available
Packagers
Not Available
Dosage Forms
Not Available
Prices
Not Available
Patents
Not Available

Properties

State
Solid
Experimental Properties
Not Available
Predicted Properties
PropertyValueSource
Water Solubility0.00905 mg/mLALOGPS
logP4.65ALOGPS
logP4.64Chemaxon
logS-4.5ALOGPS
pKa (Strongest Basic)9.33Chemaxon
Physiological Charge1Chemaxon
Hydrogen Acceptor Count2Chemaxon
Hydrogen Donor Count0Chemaxon
Polar Surface Area12.47 Å2Chemaxon
Rotatable Bond Count8Chemaxon
Refractivity89.77 m3·mol-1Chemaxon
Polarizability33.95 Å3Chemaxon
Number of Rings2Chemaxon
Bioavailability1Chemaxon
Rule of FiveYesChemaxon
Ghose FilterYesChemaxon
Veber's RuleYesChemaxon
MDDR-like RuleNoChemaxon
Predicted ADMET Features
PropertyValueProbability
Human Intestinal Absorption+0.9935
Blood Brain Barrier+0.9482
Caco-2 permeable+0.8072
P-glycoprotein substrateSubstrate0.7041
P-glycoprotein inhibitor IInhibitor0.5341
P-glycoprotein inhibitor IINon-inhibitor0.885
Renal organic cation transporterInhibitor0.7133
CYP450 2C9 substrateNon-substrate0.7941
CYP450 2D6 substrateSubstrate0.6482
CYP450 3A4 substrateSubstrate0.5967
CYP450 1A2 substrateInhibitor0.9707
CYP450 2C9 inhibitorInhibitor0.5636
CYP450 2D6 inhibitorInhibitor0.9575
CYP450 2C19 inhibitorInhibitor0.6944
CYP450 3A4 inhibitorNon-inhibitor0.8309
CYP450 inhibitory promiscuityHigh CYP Inhibitory Promiscuity0.8296
Ames testNon AMES toxic0.5749
CarcinogenicityNon-carcinogens0.657
BiodegradationNot ready biodegradable0.9877
Rat acute toxicity2.2808 LD50, mol/kg Not applicable
hERG inhibition (predictor I)Strong inhibitor0.7258
hERG inhibition (predictor II)Inhibitor0.8407
ADMET data is predicted using admetSAR, a free tool for evaluating chemical ADMET properties. (23092397)

Spectra

Mass Spec (NIST)
Not Available
Spectra
SpectrumSpectrum TypeSplash Key
Predicted MS/MS Spectrum - 10V, Positive (Annotated)Predicted LC-MS/MSsplash10-0f89-1790000000-e45616878dde7749104c
Predicted MS/MS Spectrum - 20V, Positive (Annotated)Predicted LC-MS/MSsplash10-0f89-9410000000-c0472932a2f3cac6d552
Predicted MS/MS Spectrum - 10V, Negative (Annotated)Predicted LC-MS/MSsplash10-001i-0190000000-73025847d44a8a8d74d2
Predicted MS/MS Spectrum - 40V, Positive (Annotated)Predicted LC-MS/MSsplash10-008c-9400000000-ef3c321bf6dc3931b5f0
Predicted MS/MS Spectrum - 20V, Negative (Annotated)Predicted LC-MS/MSsplash10-001i-2910000000-fc3e03bc450ca2a74387
Predicted MS/MS Spectrum - 40V, Negative (Annotated)Predicted LC-MS/MSsplash10-00lr-1900000000-28cc3d2b9edeeba08cac
Predicted 1H NMR Spectrum1D NMRNot Applicable
Predicted 13C NMR Spectrum1D NMRNot Applicable
Chromatographic Properties
Collision Cross Sections (CCS)
AdductCCS Value (Å2)Source typeSource
[M-H]-185.0617415
predicted
DarkChem Lite v0.1.0
[M-H]-168.5848
predicted
DeepCCS 1.0 (2019)
[M+H]+185.3479415
predicted
DarkChem Lite v0.1.0
[M+H]+170.9428
predicted
DeepCCS 1.0 (2019)
[M+Na]+185.2129415
predicted
DarkChem Lite v0.1.0
[M+Na]+177.03593
predicted
DeepCCS 1.0 (2019)

Targets

Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock new
insights and accelerate drug research.
Learn more
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
Learn more
Kind
Protein
Organism
Humans
Pharmacological action
Yes
Actions
Inducer
General Function
Translocates drugs and phospholipids across the membrane (PubMed:2897240, PubMed:35970996, PubMed:8898203, PubMed:9038218). Catalyzes the flop of phospholipids from the cytoplasmic to the exoplasmic leaflet of the apical membrane. Participates mainly to the flop of phosphatidylcholine, phosphatidylethanolamine, beta-D-glucosylceramides and sphingomyelins (PubMed:8898203). Energy-dependent efflux pump responsible for decreased drug accumulation in multidrug-resistant cells (PubMed:2897240, PubMed:35970996, PubMed:9038218)
Specific Function
ABC-type xenobiotic transporter activity
Gene Name
ABCB1
Uniprot ID
P08183
Uniprot Name
ATP-dependent translocase ABCB1
Molecular Weight
141477.255 Da
References
  1. Vincent M: Tesmilifene may enhance breast cancer chemotherapy by killing a clone of aggressive, multi-drug resistant cells through its action on the p-glycoprotein pump. Med Hypotheses. 2006;66(4):715-31. Epub 2006 Jan 18. [Article]
  2. Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Antagonist
General Function
G-protein-coupled receptor for histamine, a biogenic amine that functions as an immune modulator and a neurotransmitter (PubMed:33828102, PubMed:8280179). Through the H1 receptor, histamine mediates the contraction of smooth muscles and increases capillary permeability due to contraction of terminal venules. Also mediates neurotransmission in the central nervous system and thereby regulates circadian rhythms, emotional and locomotor activities as well as cognitive functions (By similarity)
Specific Function
G protein-coupled serotonin receptor activity
Gene Name
HRH1
Uniprot ID
P35367
Uniprot Name
Histamine H1 receptor
Molecular Weight
55783.61 Da
References
  1. Brandes LJ, Bogdanovic RP, Cawker MD, LaBella FS: Histamine and growth: interaction of antiestrogen binding site ligands with a novel histamine site that may be associated with calcium channels. Cancer Res. 1987 Aug 1;47(15):4025-31. [Article]

Enzymes

Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
Inhibitor
Inducer
General Function
A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
Specific Function
1,8-cineole 2-exo-monooxygenase activity
Gene Name
CYP3A4
Uniprot ID
P08684
Uniprot Name
Cytochrome P450 3A4
Molecular Weight
57342.67 Da
References
  1. Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of fatty acids, steroids and retinoids (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:18698000, PubMed:19965576, PubMed:20972997, PubMed:21289075, PubMed:21576599). Catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) (PubMed:19965576, PubMed:20972997). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 20-hydroxyeicosatetraenoic acid ethanolamide (20-HETE-EA) and 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:18698000, PubMed:21289075). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes cholesterol toward 25-hydroxycholesterol, a physiological regulator of cellular cholesterol homeostasis (PubMed:21576599). Catalyzes the oxidative transformations of all-trans retinol to all-trans retinal, a precursor for the active form all-trans-retinoic acid (PubMed:10681376). Also involved in the oxidative metabolism of drugs such as antiarrhythmics, adrenoceptor antagonists, and tricyclic antidepressants
Specific Function
anandamide 11,12 epoxidase activity
Gene Name
CYP2D6
Uniprot ID
P10635
Uniprot Name
Cytochrome P450 2D6
Molecular Weight
55768.94 Da
References
  1. Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]
Kind
Protein
Organism
Humans
Pharmacological action
Unknown
Actions
Substrate
General Function
A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:10681376, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15041462, PubMed:15805301, PubMed:18577768, PubMed:19965576, PubMed:20972997). Catalyzes the hydroxylation of carbon-hydrogen bonds. Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C15-alpha and C16-alpha positions (PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15805301). Displays different regioselectivities for polyunsaturated fatty acids (PUFA) hydroxylation (PubMed:15041462, PubMed:18577768). Catalyzes the epoxidation of double bonds of certain PUFA (PubMed:15041462, PubMed:19965576, PubMed:20972997). Converts arachidonic acid toward epoxyeicosatrienoic acid (EET) regioisomers, 8,9-, 11,12-, and 14,15-EET, that function as lipid mediators in the vascular system (PubMed:20972997). Displays an absolute stereoselectivity in the epoxidation of eicosapentaenoic acid (EPA) producing the 17(R),18(S) enantiomer (PubMed:15041462). May play an important role in all-trans retinoic acid biosynthesis in extrahepatic tissues. Catalyzes two successive oxidative transformation of all-trans retinol to all-trans retinal and then to the active form all-trans retinoic acid (PubMed:10681376). May also participate in eicosanoids metabolism by converting hydroperoxide species into oxo metabolites (lipoxygenase-like reaction, NADPH-independent) (PubMed:21068195)
Specific Function
arachidonic acid monooxygenase activity
Gene Name
CYP1A1
Uniprot ID
P04798
Uniprot Name
Cytochrome P450 1A1
Molecular Weight
58164.815 Da
References
  1. Brandes LJ, Queen GM, LaBella FS: N,N-diethyl-2-[4-(phenylmethyl)phenoxy] ethanamine (DPPE) a chemopotentiating and cytoprotective agent in clinical trials: interaction with histamine at cytochrome P450 3A4 and other isozymes that metabolize antineoplastic drugs. Cancer Chemother Pharmacol. 2000;45(4):298-304. [Article]

Drug created at October 21, 2007 22:23 / Updated at February 21, 2021 18:51