Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels.

Article Details

Citation

Wickenden AD, Yu W, Zou A, Jegla T, Wagoner PK

Retigabine, a novel anti-convulsant, enhances activation of KCNQ2/Q3 potassium channels.

Mol Pharmacol. 2000 Sep;58(3):591-600.

PubMed ID
10953053 [ View in PubMed
]
Abstract

Retigabine [N-(2-amino-4-[fluorobenzylamino]-phenyl) carbamic acid; D-23129] is a novel anticonvulsant, unrelated to currently available antiepileptic agents, with activity in a broad range of seizure models. In the present study, we sought to determine whether retigabine could enhance current through M-like currents in PC12 cells and KCNQ2/Q3 K(+) channels expressed in Chinese hamster ovary cells (CHO-KCNQ2/Q3). In differentiated PC12 cells, retigabine enhanced a linopirdine-sensitive current. The effect of retigabine was associated with a slowing of M-like tail current deactivation in these cells. Retigabine (0.1 to 10 microM) induced a potassium current and hyperpolarized CHO cells expressing KCNQ2/Q3 cells but not in wild-type cells. Retigabine-induced currents in CHO-KCNQ2/Q3 cells were inhibited by 60.6 +/- 11% (n = 4) by the KCNQ2/Q3 blocker, linopirdine (10 microM), and 82.7 +/- 5.4% (n = 4) by BaCl(2) (10 mM). The mechanism by which retigabine enhanced KCNQ2/Q3 currents involved large, drug-induced, leftward shifts in the voltage dependence of channel activation (-33.1 +/- 2.6 mV, n = 4, by 10 microM retigabine). Retigabine shifted the voltage dependence of channel activation with an EC(50) value of 1.6 +/- 0.3 microM (slope factor was 1.2 +/- 0.1, n = 4 to 5 cells per concentration). Retigabine (0.1 to 10 microM) also slowed the rate of channel deactivation, predominantly by increasing the contribution of a slowly deactivating tail current component. Our findings identify KCNQ2/Q3 channels as a molecular target for retigabine and suggest that activation of KCNQ2/Q3 channels may be responsible for at least some of the anticonvulsant activity of this agent.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
EzogabinePotassium voltage-gated channel subfamily KQT member 2ProteinHumans
Unknown
Not AvailableDetails
EzogabinePotassium voltage-gated channel subfamily KQT member 3ProteinHumans
Unknown
Not AvailableDetails
Polypeptides
NameUniProt ID
Potassium voltage-gated channel subfamily KQT member 2O43526Details
Potassium voltage-gated channel subfamily KQT member 3O43525Details