Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin.

Article Details

Citation

Saartok T, Dahlberg E, Gustafsson JA

Relative binding affinity of anabolic-androgenic steroids: comparison of the binding to the androgen receptors in skeletal muscle and in prostate, as well as to sex hormone-binding globulin.

Endocrinology. 1984 Jun;114(6):2100-6. doi: 10.1210/endo-114-6-2100.

PubMed ID
6539197 [ View in PubMed
]
Abstract

It is unclear whether anabolic steroids act on skeletal muscle via the androgen receptor (AR) in this tissue, or whether there is a separate anabolic receptor. When several anabolic steroids were tested as competitors for the binding of [3H]methyltrienolone (MT; 17 beta-hydroxy-17 alpha-methyl-4,9,11-estratrien-3-one) to the AR in rat and rabbit skeletal muscle and rat prostate, respectively, MT itself was the most efficient competitor. 1 alpha-Methyl-5 alpha-dihydrotestosterone (1 alpha-methyl-DHT; mesterolone) bound most avidly to sex hormone-binding globulin (SHBG) [relative binding affinity (RBA) about 4 times that of DHT]. Some anabolic-androgenic steroids bound strongly to the AR in skeletal muscle and prostate [ RBAs relative to that of MT: MT greater than 19-nortestosterone ( NorT ; nandrolone) greater than methenolone (17 beta-hydroxy-1-methyl-5 alpha-androst-1-en-3-one) greater than testosterone (T) greater than 1 alpha-methyl-DHT]. In other cases, AR binding was weak (RBA values less than 0.05): stanozolol (17 alpha-methyl-5 alpha- androstano [3,2-c]pyrazol-17 beta-ol), methanedienone (17 beta-hydroxy-17 alpha-methyl-1,4-androstadien-3-one), and fluoxymesterolone (9 alpha-fluoro-11 beta-hydroxy-17 alpha-methyl-T). Other compounds had RBAs too low to be determined (e.g. oxymetholone (17 beta-hydroxy-2-hydroxymethylene-17 alpha-methyl-5 alpha-androstan-3-one) and ethylestrenol (17 alpha-ethyl-4- estren -17 beta-ol). The competition pattern was similar in muscle and prostate, except for a higher RBA of DHT in the prostate. The low RBA of DHT in muscle was probably due to the previously reported rapid reduction of its 3-keto function to metabolites, which did not bind to the AR [5 alpha-androstane-3 alpha, 17 beta-diol and its 3 beta-isomer (3 alpha- and 3 beta-adiol, respectively)]. Some anabolic-androgenic steroids (only a few synthetic) bound to SHBG (1 alpha-methyl-DHT much greater than DHT greater than T greater than 3 beta-adiol greater than 3 alpha-adiol = 17 alpha-methyl-T greater than methenolone greater than methanedienone greater than stanozolol). The ratio of the RBA in rat muscle to that in the prostate (an estimate of the myotrophic potency of the compounds) was close to unity, varying only between about 0.4 and 1.7 in most cases.(ABSTRACT TRUNCATED AT 400 WORDS)

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
StanozololAndrogen receptorProteinHumans
Yes
Agonist
Details