Activation of phenacetin O-deethylase activity by alpha-naphthoflavone in human liver microsomes.

Article Details

Citation

Nakajima M, Kobayashi K, Oshima K, Shimada N, Tokudome S, Chiba K, Yokoi T

Activation of phenacetin O-deethylase activity by alpha-naphthoflavone in human liver microsomes.

Xenobiotica. 1999 Sep;29(9):885-98. doi: 10.1080/004982599238137 .

PubMed ID
10548449 [ View in PubMed
]
Abstract

1. The roles of different human cytochrome P450s (CYP) in phenacetin O-deethylation were investigated using human liver microsomes and recombinant proteins. Phenacetin O-deethylase (POD) activities in human liver microsomes at substrate concentrations of 10 and 500 microM were inhibited by 0.1 and 1 microM alpha-naphthoflavone and activated by 10 and 100 microM alpha-naphthoflavone. The activation of POD activity in human liver microsomes by alphanaphthoflavone was inhibited by 100 microM aniline, anti-CYP2E1 antibody, 1 microM ketoconazole and anti-CYP3A4 antibody. 2. In recombinant CYP from human B-lymphoblast cells, POD activities at a phenacetin concentration of 500 microM were detected for CYP2E1 and CYP3A4, as well as CYP1A2, CYP1A1, CYP2C19, CYP2C9 and CYP2A6. In recombinant CYP from human B-lymphoblast cells or baculovirus-infected insect cells and in reconstituted systems, a requirement of cytochrome b5 (b5) for POD activities catalysed by CYP2E1 and CYP3A4 was observed. The activation of POD activity by alpha-naphthoflavone was observed for CYP3A4, but not for CYP2E1. Co-expression of b5 with CYP3A4 enhanced the activation of POD activity by alpha-naphthoflavone. 3. In the absence of alpha-naphthoflavone, the POD activity in pooled human liver microsomes at 500 microM phenacetin was significantly inhibited (p<0.0001) by 10 microM fluvoxamine, but not by 1 microM ketoconazole. In the presence of alpha-naphthoflavone, the activity was significantly inhibited (p<0.0001) by 1 microM ketoconazole, but not by 10 microM fluvoxamine. 4. Inter-individual differences in the effects of alpha-naphthoflavone on POD activity in human liver microsomes were observed, and the involvement of CYP3A4 as well as CYP1A2 in POD activity in human liver was identified even at a low substrate concentration.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
PhenacetinCytochrome P450 2C9ProteinHumans
Unknown
Substrate
Details