A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509.

Article Details

Citation

Joseph JD, Lu N, Qian J, Sensintaffar J, Shao G, Brigham D, Moon M, Maneval EC, Chen I, Darimont B, Hager JH

A clinically relevant androgen receptor mutation confers resistance to second-generation antiandrogens enzalutamide and ARN-509.

Cancer Discov. 2013 Sep;3(9):1020-9. doi: 10.1158/2159-8290.CD-13-0226. Epub 2013 Jun 18.

PubMed ID
23779130 [ View in PubMed
]
Abstract

Despite the impressive clinical activity of the second-generation antiandrogens enzalutamide and ARN-509 in patients with prostate cancer, acquired resistance invariably emerges. To identify the molecular mechanisms underlying acquired resistance, we developed and characterized cell lines resistant to ARN-509 and enzalutamide. In a subset of cell lines, ARN-509 and enzalutamide exhibit agonist activity due to a missense mutation (F876L) in the ligand-binding domain of the androgen receptor (AR). AR F876L is sufficient to confer resistance to ARN-509 and enzalutamide in in vitro and in vivo models of castration-resistant prostate cancer (CRPC). Importantly, the AR F876L mutant is detected in plasma DNA from ARN-509-treated patients with progressive CRPC. Thus, selective outgrowth of AR F876L is a clinically relevant mechanism of second-generation antiandrogen resistance that can potentially be targeted with next-generation antiandrogens. SIGNIFICANCE: A missense mutation in the ligand-binding domain of the androgen receptor F876L confers resistance to the second-generation antiandrogens enzalutamide and ARN-509 in preclinical models of AR function and prostate cancer and is detected in plasma DNA from ARN-509-treated patients with progressive disease. These results chart a new path for the discovery and development of next-generation antiandrogens that could be coupled with a blood-based companion diagnostic to guide treatment decisions.

DrugBank Data that Cites this Article

Drugs