Epicept NP-1
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- Epicept NP-1
- DrugBank Accession Number
- DB05492
- Background
EpiCept NP-1 is a prescription topical analgesic cream designed to provide effective, long-term relief from the pain of peripheral neuropathies. Peripheral neuropathies are medical conditions caused by damage to the nerves in the peripheral nervous system. The peripheral nervous system includes nerves that run from the brain and spinal cord to the rest of the body. EpiCept NP-1 Cream is a patented formulation containing two FDA-approved drugs, amitriptyline (a widely-used antidepressant) and ketamine (an NMDA antagonist that is used as an anesthetic).
- Type
- Small Molecule
- Groups
- Investigational
- Structure
- Weight
- Average: 209.245
Monoisotopic: 209.116426739 - Chemical Formula
- C10H15N3O2
- Synonyms
- Not Available
Pharmacology
- Indication
Investigated for use/treatment in neuropathy (diabetic) and pain (acute or chronic).
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
EpiCept NP-1 is a prescription topical analgesic cream designed to provide effective, long-term relief from the pain of peripheral neuropathies. Peripheral neuropathies are medical conditions caused by damage to the nerves in the peripheral nervous system. The peripheral nervous system includes nerves that run from the brain and spinal cord to the rest of the body. It is estimated that these conditions affect more than 15 million people in the U.S. and is associated with conditions that injure peripheral nerves, including herpes zoster, or shingles, diabetes, chemotherapy, HIV and other diseases. Peripheral neuropathies can also be caused by trauma or may result from surgical procedures. EpiCept NP-1 Cream is a patented formulation containing two FDA-approved drugs, amitriptyline (a widely-used antidepressant) and ketamine (an NMDA antagonist that is used as an anesthetic).
- Mechanism of action
The mechanism(s) of action are unclear for Epicept. Both ketamine and amitriptyline inhibit N-methyl-D-aspartate receptors in neuronal preparations and may be involved in sensitization of tetrodotoxin-resistant Na+ currents in nociceptors by blocking Na+ channels. In producing antihyperalgesia with pretreatment, but not posttreatment, regimens, ketamine and amitriptyline resemble the profile of a µ-opioid receptor agonist. In addition to the above effects, amitriptyline also inhibits noradrenaline, 5-HT, and adenosine uptake; inter-acts with opioid mechanisms; blocks Ca2+ channels; and blocks cholinergic, histamine H1, 5-HT2, and {alpha}-adrenergic receptors. Accordingly there are many possible mechanisms at work.
Target Actions Organism UMu-type opioid receptor Not Available Humans U5-hydroxytryptamine receptor 2A Not Available Humans U5-hydroxytryptamine receptor 2B Not Available Humans U5-hydroxytryptamine receptor 2C Not Available Humans UAlpha-1A adrenergic receptor Not Available Humans UAlpha-1B adrenergic receptor Not Available Humans UAlpha-1D adrenergic receptor Not Available Humans UAlpha-2A adrenergic receptor Not Available Humans UAlpha-2B adrenergic receptor Not Available Humans UAlpha-2C adrenergic receptor Not Available Humans UHistamine H1 receptor Not Available Humans UNociceptin receptor Not Available Humans - Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
- Not Available
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Mild sensitivity at application site
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.Not Available
- Food Interactions
- Not Available
Categories
- Drug Categories
- Not Available
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as nitrobenzenes. These are compounds containing a nitrobenzene moiety, which consists of a benzene ring with a carbon bearing a nitro group.
- Kingdom
- Organic compounds
- Super Class
- Benzenoids
- Class
- Benzene and substituted derivatives
- Sub Class
- Nitrobenzenes
- Direct Parent
- Nitrobenzenes
- Alternative Parents
- Nitrotoluenes / Phenylalkylamines / Nitroaromatic compounds / Aniline and substituted anilines / Aminotoluenes / Secondary alkylarylamines / Propargyl-type 1,3-dipolar organic compounds / Organic oxoazanium compounds / Organopnictogen compounds / Organic zwitterions show 3 more
- Substituents
- Allyl-type 1,3-dipolar organic compound / Amine / Aminotoluene / Aniline or substituted anilines / Aromatic homomonocyclic compound / C-nitro compound / Hydrocarbon derivative / Nitroaromatic compound / Nitrobenzene / Nitrotoluene show 16 more
- Molecular Framework
- Aromatic homomonocyclic compounds
- External Descriptors
- Not Available
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- Not Available
- CAS number
- Not Available
- InChI Key
- FKZUPMCBVURANR-UHFFFAOYSA-N
- InChI
- InChI=1S/C10H15N3O2/c1-8-3-4-9(12-6-2-5-11)10(7-8)13(14)15/h3-4,7,12H,2,5-6,11H2,1H3
- IUPAC Name
- N1-(4-methyl-2-nitrophenyl)propane-1,3-diamine
- SMILES
- CC1=CC(=C(NCCCN)C=C1)[N+]([O-])=O
References
- General References
- Sandroni P, Davis MD: Combination gel of 1% amitriptyline and 0.5% ketamine to treat refractory erythromelalgia pain: a new treatment option? Arch Dermatol. 2006 Mar;142(3):283-6. [Article]
- Lynch ME, Clark AJ, Sawynok J, Sullivan MJ: Topical amitriptyline and ketamine in neuropathic pain syndromes: an open-label study. J Pain. 2005 Oct;6(10):644-9. [Article]
- Lynch ME, Clark AJ, Sawynok J, Sullivan MJ: Topical 2% amitriptyline and 1% ketamine in neuropathic pain syndromes: a randomized, double-blind, placebo-controlled trial. Anesthesiology. 2005 Jul;103(1):140-6. [Article]
- Oatway M, Reid A, Sawynok J: Peripheral antihyperalgesic and analgesic actions of ketamine and amitriptyline in a model of mild thermal injury in the rat. Anesth Analg. 2003 Jul;97(1):168-73, table of contents. [Article]
- External Links
- PubChem Compound
- 5276854
- PubChem Substance
- 175427020
- ChemSpider
- 4440796
- BindingDB
- 50398244
- ChEMBL
- CHEMBL609728
- ZINC
- ZINC000028644947
- PDBe Ligand
- NP1
- PDB Entries
- 1wug
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data3 Completed Supportive Care Neurologic toxicity / Pain / Peripheral neuropathy / Unspecified Adult Solid Tumor, Protocol Specific 1 somestatus stop reason just information to hide 2 Completed Treatment Diabetic Peripheral Neuropathy (DPN) / Neuropathic Pain 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.472 mg/mL ALOGPS logP 1.8 ALOGPS logP 1.81 Chemaxon logS -2.6 ALOGPS pKa (Strongest Acidic) 15.25 Chemaxon pKa (Strongest Basic) 9.82 Chemaxon Physiological Charge 1 Chemaxon Hydrogen Acceptor Count 4 Chemaxon Hydrogen Donor Count 2 Chemaxon Polar Surface Area 81.19 Å2 Chemaxon Rotatable Bond Count 5 Chemaxon Refractivity 60.43 m3·mol-1 Chemaxon Polarizability 22.52 Å3 Chemaxon Number of Rings 1 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule No Chemaxon MDDR-like Rule No Chemaxon - Predicted ADMET Features
Property Value Probability Human Intestinal Absorption + 0.9629 Blood Brain Barrier + 0.787 Caco-2 permeable - 0.5109 P-glycoprotein substrate Non-substrate 0.5295 P-glycoprotein inhibitor I Non-inhibitor 0.7583 P-glycoprotein inhibitor II Non-inhibitor 0.8837 Renal organic cation transporter Non-inhibitor 0.7637 CYP450 2C9 substrate Non-substrate 0.8113 CYP450 2D6 substrate Non-substrate 0.7816 CYP450 3A4 substrate Non-substrate 0.6621 CYP450 1A2 substrate Inhibitor 0.8305 CYP450 2C9 inhibitor Non-inhibitor 0.5367 CYP450 2D6 inhibitor Non-inhibitor 0.8092 CYP450 2C19 inhibitor Non-inhibitor 0.547 CYP450 3A4 inhibitor Non-inhibitor 0.7969 CYP450 inhibitory promiscuity Low CYP Inhibitory Promiscuity 0.7156 Ames test AMES toxic 0.8628 Carcinogenicity Non-carcinogens 0.5464 Biodegradation Not ready biodegradable 0.9626 Rat acute toxicity 2.4866 LD50, mol/kg Not applicable hERG inhibition (predictor I) Strong inhibitor 0.5324 hERG inhibition (predictor II) Non-inhibitor 0.6512
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted GC-MS Spectrum - GC-MS Predicted GC-MS splash10-001i-9600000000-f64429fa3a33faa532cc Predicted 1H NMR Spectrum 1D NMR Not Applicable Predicted 13C NMR Spectrum 1D NMR Not Applicable - Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 140.28813 predictedDeepCCS 1.0 (2019) [M+H]+ 143.69142 predictedDeepCCS 1.0 (2019) [M+Na]+ 152.45235 predictedDeepCCS 1.0 (2019)
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Receptor for endogenous opioids such as beta-endorphin and endomorphin (PubMed:10529478, PubMed:12589820, PubMed:7891175, PubMed:7905839, PubMed:7957926, PubMed:9689128). Receptor for natural and synthetic opioids including morphine, heroin, DAMGO, fentanyl, etorphine, buprenorphin and methadone (PubMed:10529478, PubMed:10836142, PubMed:12589820, PubMed:19300905, PubMed:7891175, PubMed:7905839, PubMed:7957926, PubMed:9689128). Also activated by enkephalin peptides, such as Met-enkephalin or Met-enkephalin-Arg-Phe, with higher affinity for Met-enkephalin-Arg-Phe (By similarity). Agonist binding to the receptor induces coupling to an inactive GDP-bound heterotrimeric G-protein complex and subsequent exchange of GDP for GTP in the G-protein alpha subunit leading to dissociation of the G-protein complex with the free GTP-bound G-protein alpha and the G-protein beta-gamma dimer activating downstream cellular effectors (PubMed:7905839). The agonist- and cell type-specific activity is predominantly coupled to pertussis toxin-sensitive G(i) and G(o) G alpha proteins, GNAI1, GNAI2, GNAI3 and GNAO1 isoforms Alpha-1 and Alpha-2, and to a lesser extent to pertussis toxin-insensitive G alpha proteins GNAZ and GNA15 (PubMed:12068084). They mediate an array of downstream cellular responses, including inhibition of adenylate cyclase activity and both N-type and L-type calcium channels, activation of inward rectifying potassium channels, mitogen-activated protein kinase (MAPK), phospholipase C (PLC), phosphoinositide/protein kinase (PKC), phosphoinositide 3-kinase (PI3K) and regulation of NF-kappa-B (By similarity). Also couples to adenylate cyclase stimulatory G alpha proteins (By similarity). The selective temporal coupling to G-proteins and subsequent signaling can be regulated by RGSZ proteins, such as RGS9, RGS17 and RGS4 (By similarity). Phosphorylation by members of the GPRK subfamily of Ser/Thr protein kinases and association with beta-arrestins is involved in short-term receptor desensitization (By similarity). Beta-arrestins associate with the GPRK-phosphorylated receptor and uncouple it from the G-protein thus terminating signal transduction (By similarity). The phosphorylated receptor is internalized through endocytosis via clathrin-coated pits which involves beta-arrestins (By similarity). The activation of the ERK pathway occurs either in a G-protein-dependent or a beta-arrestin-dependent manner and is regulated by agonist-specific receptor phosphorylation (By similarity). Acts as a class A G-protein coupled receptor (GPCR) which dissociates from beta-arrestin at or near the plasma membrane and undergoes rapid recycling (By similarity). Receptor down-regulation pathways are varying with the agonist and occur dependent or independent of G-protein coupling (By similarity). Endogenous ligands induce rapid desensitization, endocytosis and recycling (By similarity). Heterooligomerization with other GPCRs can modulate agonist binding, signaling and trafficking properties (By similarity)
- Specific Function
- Beta-endorphin receptor activity
- Gene Name
- OPRM1
- Uniprot ID
- P35372
- Uniprot Name
- Mu-type opioid receptor
- Molecular Weight
- 44778.855 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin) (PubMed:1330647, PubMed:18703043, PubMed:19057895). Also functions as a receptor for various drugs and psychoactive substances, including mescaline, psilocybin, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI) and lysergic acid diethylamide (LSD) (PubMed:28129538). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors (PubMed:28129538). Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways (PubMed:28129538). Signaling activates phospholipase C and a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and promotes the release of Ca(2+) ions from intracellular stores (PubMed:18703043, PubMed:28129538). Affects neural activity, perception, cognition and mood (PubMed:18297054). Plays a role in the regulation of behavior, including responses to anxiogenic situations and psychoactive substances. Plays a role in intestinal smooth muscle contraction, and may play a role in arterial vasoconstriction
- Specific Function
- 1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine binding
- Gene Name
- HTR2A
- Uniprot ID
- P28223
- Uniprot Name
- 5-hydroxytryptamine receptor 2A
- Molecular Weight
- 52602.58 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin) (PubMed:18703043, PubMed:23519210, PubMed:7926008, PubMed:8078486, PubMed:8143856, PubMed:8882600). Also functions as a receptor for various ergot alkaloid derivatives and psychoactive substances (PubMed:12970106, PubMed:18703043, PubMed:23519210, PubMed:23519215, PubMed:24357322, PubMed:28129538, PubMed:7926008, PubMed:8078486, PubMed:8143856). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors (PubMed:23519215, PubMed:28129538, PubMed:8078486, PubMed:8143856, PubMed:8882600). Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways (PubMed:23519215, PubMed:28129538). Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores (PubMed:18703043, PubMed:23519215, PubMed:28129538, PubMed:8078486, PubMed:8143856, PubMed:8882600). Plays a role in the regulation of dopamine and 5-hydroxytryptamine release, 5-hydroxytryptamine uptake and in the regulation of extracellular dopamine and 5-hydroxytryptamine levels, and thereby affects neural activity. May play a role in the perception of pain (By similarity). Plays a role in the regulation of behavior, including impulsive behavior (PubMed:21179162). Required for normal proliferation of embryonic cardiac myocytes and normal heart development. Protects cardiomyocytes against apoptosis. Plays a role in the adaptation of pulmonary arteries to chronic hypoxia. Plays a role in vasoconstriction. Required for normal osteoblast function and proliferation, and for maintaining normal bone density. Required for normal proliferation of the interstitial cells of Cajal in the intestine (By similarity)
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HTR2B
- Uniprot ID
- P41595
- Uniprot Name
- 5-hydroxytryptamine receptor 2B
- Molecular Weight
- 54297.41 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- G-protein coupled receptor for 5-hydroxytryptamine (serotonin). Also functions as a receptor for various drugs and psychoactive substances, including ergot alkaloid derivatives, 1-2,5,-dimethoxy-4-iodophenyl-2-aminopropane (DOI) and lysergic acid diethylamide (LSD). Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Beta-arrestin family members inhibit signaling via G proteins and mediate activation of alternative signaling pathways. Signaling activates a phosphatidylinositol-calcium second messenger system that modulates the activity of phosphatidylinositol 3-kinase and down-stream signaling cascades and promotes the release of Ca(2+) ions from intracellular stores. Regulates neuronal activity via the activation of short transient receptor potential calcium channels in the brain, and thereby modulates the activation of pro-opiomelacortin neurons and the release of CRH that then regulates the release of corticosterone. Plays a role in the regulation of appetite and eating behavior, responses to anxiogenic stimuli and stress. Plays a role in insulin sensitivity and glucose homeostasis
- Specific Function
- 1-(4-iodo-2,5-dimethoxyphenyl)propan-2-amine binding
- Gene Name
- HTR2C
- Uniprot ID
- P28335
- Uniprot Name
- 5-hydroxytryptamine receptor 2C
- Molecular Weight
- 51804.645 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine(PE)-stimulated ERK signaling in cardiac myocytes
- Specific Function
- Alpha1-adrenergic receptor activity
- Gene Name
- ADRA1A
- Uniprot ID
- P35348
- Uniprot Name
- Alpha-1A adrenergic receptor
- Molecular Weight
- 51486.005 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- This alpha-adrenergic receptor mediates its action by association with G proteins that activate a phosphatidylinositol-calcium second messenger system. Its effect is mediated by G(q) and G(11) proteins. Nuclear ADRA1A-ADRA1B heterooligomers regulate phenylephrine (PE)-stimulated ERK signaling in cardiac myocytes
- Specific Function
- Alpha1-adrenergic receptor activity
- Gene Name
- ADRA1B
- Uniprot ID
- P35368
- Uniprot Name
- Alpha-1B adrenergic receptor
- Molecular Weight
- 56835.375 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- This alpha-adrenergic receptor mediates its effect through the influx of extracellular calcium
- Specific Function
- Alpha1-adrenergic receptor activity
- Gene Name
- ADRA1D
- Uniprot ID
- P25100
- Uniprot Name
- Alpha-1D adrenergic receptor
- Molecular Weight
- 60462.205 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is oxymetazoline > clonidine > epinephrine > norepinephrine > phenylephrine > dopamine > p-synephrine > p-tyramine > serotonin = p-octopamine. For antagonists, the rank order is yohimbine > phentolamine = mianserine > chlorpromazine = spiperone = prazosin > propanolol > alprenolol = pindolol
- Specific Function
- Alpha-1b adrenergic receptor binding
- Gene Name
- ADRA2A
- Uniprot ID
- P08913
- Uniprot Name
- Alpha-2A adrenergic receptor
- Molecular Weight
- 50646.17 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins. The rank order of potency for agonists of this receptor is clonidine > norepinephrine > epinephrine = oxymetazoline > dopamine > p-tyramine = phenylephrine > serotonin > p-synephrine / p-octopamine. For antagonists, the rank order is yohimbine > chlorpromazine > phentolamine > mianserine > spiperone > prazosin > alprenolol > propanolol > pindolol
- Specific Function
- Alpha2-adrenergic receptor activity
- Gene Name
- ADRA2B
- Uniprot ID
- P18089
- Uniprot Name
- Alpha-2B adrenergic receptor
- Molecular Weight
- 49953.145 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Alpha-2 adrenergic receptors mediate the catecholamine-induced inhibition of adenylate cyclase through the action of G proteins
- Specific Function
- Alpha-2a adrenergic receptor binding
- Gene Name
- ADRA2C
- Uniprot ID
- P18825
- Uniprot Name
- Alpha-2C adrenergic receptor
- Molecular Weight
- 49521.585 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- In peripheral tissues, the H1 subclass of histamine receptors mediates the contraction of smooth muscles, increase in capillary permeability due to contraction of terminal venules, and catecholamine release from adrenal medulla, as well as mediating neurotransmission in the central nervous system
- Specific Function
- G protein-coupled serotonin receptor activity
- Gene Name
- HRH1
- Uniprot ID
- P35367
- Uniprot Name
- Histamine H1 receptor
- Molecular Weight
- 55783.61 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- G-protein coupled opioid receptor that functions as a receptor for the endogenous neuropeptide nociceptin. Ligand binding causes a conformation change that triggers signaling via guanine nucleotide-binding proteins (G proteins) and modulates the activity of down-stream effectors. Signaling via G proteins mediates inhibition of adenylate cyclase activity and calcium channel activity. Arrestins modulate signaling via G proteins and mediate the activation of alternative signaling pathways that lead to the activation of MAP kinases. Plays a role in modulating nociception and the perception of pain. Plays a role in the regulation of locomotor activity by the neuropeptide nociceptin
- Specific Function
- G protein-coupled receptor activity
- Gene Name
- OPRL1
- Uniprot ID
- P41146
- Uniprot Name
- Nociceptin receptor
- Molecular Weight
- 40692.775 Da
Drug created at November 18, 2007 18:25 / Updated at June 12, 2020 16:52