Gag-Pol polyprotein

Details

Name
Gag-Pol polyprotein
Synonyms
  • Pr160Gag-Pol
Gene Name
gag-pol
Organism
HIV-1
Amino acid sequence
>lcl|BSEQ0037139|Gag-Pol polyprotein
MGARASVLSGGELDKWEKIRLRPGGKKQYKLKHIVWASRELERFAVNPGLLETSEGCRQI
LGQLQPSLQTGSEELRSLYNTIAVLYCVHQRIDVKDTKEALDKIEEEQNKSKKKAQQAAA
DTGNNSQVSQNYPIVQNLQGQMVHQAISPRTLNAWVKVVEEKAFSPEVIPMFSALSEGAT
PQDLNTMLNTVGGHQAAMQMLKETINEEAAEWDRLHPVHAGPIAPGQMREPRGSDIAGTT
STLQEQIGWMTHNPPIPVGEIYKRWIILGLNKIVRMYSPTSILDIRQGPKEPFRDYVDRF
YKTLRAEQASQEVKNWMTETLLVQNANPDCKTILKALGPGATLEEMMTACQGVGGPGHKA
RVLAEAMSQVTNPATIMIQKGNFRNQRKTVKCFNCGKEGHIAKNCRAPRKKGCWKCGKEG
HQMKDCTERQANFLREDLAFPQGKAREFSSEQTRANSPTRRELQVWGRDNNSLSEAGADR
QGTVSFSFPQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMNLPGRWKPKMIGGIGG
FIKVRQYDQILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPISPIETVPVKLK
PGMDGPKVKQWPLTEEKIKALVEICTEMEKEGKISKIGPENPYNTPVFAIKKKDSTKWRK
LVDFRELNKRTQDFWEVQLGIPHPAGLKQKKSVTVLDVGDAYFSVPLDKDFRKYTAFTIP
SINNETPGIRYQYNVLPQGWKGSPAIFQCSMTKILEPFRKQNPDIVIYQYMDDLYVGSDL
EIGQHRTKIEELRQHLLRWGFTTPDKKHQKEPPFLWMGYELHPDKWTVQPIVLPEKDSWT
VNDIQKLVGKLNWASQIYAGIKVRQLCKLLRGTKALTEVVPLTEEAELELAENREILKEP
VHGVYYDPSKDLIAEIQKQGQGQWTYQIYQEPFKNLKTGKYARMKGAHTNDVKQLTEAVQ
KIATESIVIWGKTPKFKLPIQKETWEAWWTEYWQATWIPEWEFVNTPPLVKLWYQLEKEP
IIGAETFYVDGAANRETKLGKAGYVTDRGRQKVVPLTDTTNQKTELQAIHLALQDSGLEV
NIVTDSQYALGIIQAQPDKSESELVSQIIEQLIKKEKVYLAWVPAHKGIGGNEQVDGLVS
AGIRKVLFLDGIDKAQEEHEKYHSNWRAMASDFNLPPVVAKEIVASCDKCQLKGEAMHGQ
VDCSPGIWQLDCTHLEGKVILVAVHVASGYIEAEVIPAETGQETAYFLLKLAGRWPVKTV
HTDNGSNFTSTTVKAACWWAGIKQEFGIPYNPQSQGVIESMNKELKKIIGQVRDQAEHLK
TAVQMAVFIHNFKRKGGIGGYSAGERIVDIIATDIQTKELQKQITKIQNFRVYYRDSRDP
VWKGPAKLLWKGEGAVVIQDNSDIKVVPRRKAKIIRDYGKQMAGDDCVASRQDED
Number of residues
1435
Molecular Weight
161787.87
Theoretical pI
8.83
GO Classification
Functions
aspartic-type endopeptidase activity / DNA binding / DNA-directed DNA polymerase activity / exoribonuclease H activity / identical protein binding / lipid binding / RNA binding / RNA-directed DNA polymerase activity / RNA-DNA hybrid ribonuclease activity / structural molecule activity / zinc ion binding
Processes
DNA integration / DNA recombination / establishment of integrated proviral latency / induction by virus of host cysteine-type endopeptidase activity involved in apoptotic process / suppression by virus of host gene expression / viral entry into host cell / viral penetration into host nucleus / viral release from host cell
Components
host cell nucleus / host cell plasma membrane / host multivesicular body / viral nucleocapsid / virion membrane
General Function
Zinc ion binding
Specific Function
Gag-Pol polyprotein: Mediates, with Gag polyrotein, the essential events in virion assembly, including binding the plasma membrane, making the protein-protein interactions necessary to create spherical particles, recruiting the viral Env proteins, and packaging the genomic RNA via direct interactions with the RNA packaging sequence (Psi). Gag-Pol polyprotein may regulate its own translation, by the binding genomic RNA in the 5'-UTR. At low concentration, the polyprotein would promote translation, whereas at high concentration, the polyprotein would encapsidate genomic RNA and then shutt off translation.Matrix protein p17: Targets the polyprotein to the plasma membrane via a multipartite membrane-binding signal, that includes its myristoylated N-terminus (PubMed:16840558). Matrix protein is part of the pre-integration complex. Implicated in the release from host cell mediated by Vpu. Binds to RNA.Capsid protein p24: Forms the conical core that encapsulates the genomic RNA-nucleocapsid complex in the virion. Most core are conical, with only 7% tubular. The core is constituted by capsid protein hexamer subunits. The core is disassembled soon after virion entry (By similarity). Host restriction factors such as TRIM5-alpha or TRIMCyp bind retroviral capsids and cause premature capsid disassembly, leading to blocks in reverse transcription. Capsid restriction by TRIM5 is one of the factors which restricts HIV-1 to the human species. Host PIN1 apparently facilitates the virion uncoating (PubMed:24509437). On the other hand, interactions with PDZD8 or CYPA stabilize the capsid.Nucleocapsid protein p7: Encapsulates and protects viral dimeric unspliced genomic RNA (gRNA). Binds these RNAs through its zinc fingers. Acts as a nucleic acid chaperone which is involved in rearangement of nucleic acid secondary structure during gRNA retrotranscription. Also facilitates template switch leading to recombination. As part of the polyprotein, participates to gRNA dimerization, packaging, tRNA incorporation and virion assembly.Protease: Aspartyl protease that mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell. Also cleaves Nef and Vif, probably concomitantly with viral structural proteins on maturation of virus particles. Hydrolyzes host EIF4GI and PABP1 in order to shut off the capped cellular mRNA translation. The resulting inhibition of cellular protein synthesis serves to ensure maximal viral gene expression and to evade host immune response (By similarity).Reverse transcriptase/ribonuclease H: Multifunctional enzyme that converts the viral RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA(3)-Lys binds to the primer-binding site (PBS) situated at the 5'-end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for two polypurine tracts (PPTs) situated at the 5'-end and near the center of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPTs that have not been removed by RNase H as primers. PPTs and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends.Integrase: Catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein, Vpr and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step, the PIC enters cell nucleus. This process is mediated through integrase and Vpr proteins, and allows the virus to infect a non dividing cell. This ability to enter the nucleus is specific of lentiviruses, other retroviruses cannot and rely on cell division to access cell chromosomes. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The 5'-ends are produced by integrase-catalyzed staggered cuts, 5 bp apart. A Y-shaped, gapped, recombination intermediate results, with the 5'-ends of the viral DNA strands and the 3' ends of target DNA strands remaining unjoined, flanking a gap of 5 bp. The last step is viral DNA integration into host chromosome. This involves host DNA repair synthesis in which the 5 bp gaps between the unjoined strands are filled in and then ligated. Since this process occurs at both cuts flanking the HIV genome, a 5 bp duplication of host DNA is produced at the ends of HIV-1 integration. Alternatively, Integrase may catalyze the excision of viral DNA just after strand transfer, this is termed disintegration.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Host cell membrane
Gene sequence
>lcl|BSEQ0002406|3012 bp
TTTTTTAGGGAAGATCTGGCCTTCCCACAAGGGAAGGCCAGGGAATTTTCTTCAGAGCAG
ACCAGAGCCAACAGCCCCACCAGAAGAGAGCTTCAGGTTTGGGGAAGAGACAACAACTCC
CTCTCAGAAGCAGGAGCCGATAGACAAGGAACTGTATCCTTTAGCTTCCCTCAGATCACT
CTTTGGCAGCGACCCCTCGTCACAATAAAGATAGGGGGGCAATTAAAGGAAGCTCTATTA
GATACAGGAGCAGATGATACAGTATTAGAAGAAATGAATTTGCCAGGAAGATGGAAACCA
AAAATGATAGGGGGAATTGGAGGTTTTATCAAAGTAGGACAGTATGATCAGATACTCATA
GAAATCTGCGGACATAAAGCTATAGGTACAGTATTAGTAGGACCTACACCTGTCAACATA
ATTGGAAGAAATCTGTTGACTCAGATTGGCTGCACTTTAAATTTTCCCATTAGTCCTATT
GAGACTGTACCAGTAAAATTAAAGCCAGGAATGGATGGCCCAAAAGTTAAACAATGGCCA
TTGACAGAAGAAAAAATAAAAGCATTAGTAGAAATTTGTACAGAAATGGAAAAGGAAGGA
AAAATTTCAAAAATTGGGCCTGAAAATCCATACAATACTCCAGTATTTGCCATAAAGAAA
AAAGACAGTACTAAATGGAGAAAATTAGTAGATTTCAGAGAACTTAATAAGAGAACTCAA
GATTTCTGGGAAGTTCAATTAGGAATACCACATCCTGCAGGGTTAAAACAGAAAAAATCA
GTAACAGTACTGGATGTGGGCGATGCATATTTTTCAGTTCCCTTAGATAAAGACTTCAGG
AAGTATACTGCATTTACCATACCTAGTATAAACAATGAGACACCAGGGATTAGATATCAG
TACAATGTGCTTCCACAGGGATGGAAAGGATCACCAGCAATATTCCAGTGTAGCATGACA
AAAATCTTAGAGCCTTTTAGAAAACAAAATCCAGACATAGTCATCTATCAATACATGGAT
GATTTGTATGTAGGATCTGACTTAGAAATAGGGCAGCATAGAACAAAAATAGAGGAACTG
AGACAACATCTGTTGAGGTGGGGATTTACCACACCAGACAAAAAACATCAGAAAGAACCT
CCATTCCTTTGGATGGGTTATGAACTCCATCCTGATAAATGGACAGTACAGCCTATAGTG
CTGCCAGAAAAGGACAGCTGGACTGTCAATGACATACAGAAATTAGTGGGAAAATTGAAT
TGGGCAAGTCAGATTTATGCAGGGATTAAAGTAAGGCAATTATGTAAACTTCTTAGGGGA
ACCAAAGCACTAACAGAAGTAGTACCACTAACAGAAGAAGCAGAGCTAGAACTGGCAGAA
AACAGGGAGATTCTAAAAGAACCGGTACATGGAGTGTATTATGACCCATCAAAAGACTTA
ATAGCAGAAATACAGAAGCAGGGGCAAGGCCAATGGACATATCAAATTTATCAAGAGCCA
TTTAAAAATCTGAAAACAGGAAAATATGCAAGAATGAAGGGTGCCCACACTAATGATGTG
AAACAATTAACAGAGGCAGTACAAAAAATAGCCACAGAAAGCATAGTAATATGGGGAAAG
ACTCCTAAATTTAAATTACCCATACAAAAGGAAACATGGGAAGCATGGTGGACAGAGTAT
TGGCAAGCCACCTGGATTCCTGAGTGGGAGTTTGTCAATACCCCTCCCTTAGTGAAGTTA
TGGTACCAGTTAGAGAAAGAACCCATAATAGGAGCAGAAACTTTCTATGTAGATGGGGCA
GCCAATAGGGAAACTAAATTAGGAAAAGCAGGATATGTAACTGACAGAGGAAGACAAAAA
GTTGTCCCCCTAACGGACACAACAAATCAGAAGACTGAGTTACAAGCAATTCATCTAGCT
TTGCAGGATTCGGGATTAGAAGTAAACATAGTGACAGACTCACAATATGCATTGGGAATC
ATTCAAGCACAACCAGATAAGAGTGAATCAGAGTTAGTCAGTCAAATAATAGAGCAGTTA
ATAAAAAAGGAAAAAGTCTACCTGGCATGGGTACCAGCACACAAAGGAATTGGAGGAAAT
GAACAAGTAGATGGGTTGGTCAGTGCTGGAATCAGGAAAGTACTATTTTTAGATGGAATA
GATAAGGCCCAAGAAGAACATGAGAAATATCACAGTAATTGGAGAGCAATGGCTAGTGAT
TTTAACCTACCACCTGTAGTAGCAAAAGAAATAGTAGCCAGCTGTGATAAATGTCAGCTA
AAAGGGGAAGCCATGCATGGACAAGTAGACTGTAGCCCAGGAATATGGCAGCTAGATTGT
ACACATTTAGAAGGAAAAGTTATCTTGGTAGCAGTTCATGTAGCCAGTGGATATATAGAA
GCAGAAGTAATTCCAGCAGAGACAGGGCAAGAAACAGCATACTTCCTCTTAAAATTAGCA
GGAAGATGGCCAGTAAAAACAGTACATACAGACAATGGCAGCAATTTCACCAGTACTACA
GTTAAGGCCGCCTGTTGGTGGGCGGGGATCAAGCAGGAATTTGGCATTCCCTACAATCCC
CAAAGTCAAGGAGTAATAGAATCTATGAATAAAGAATTAAAGAAAATTATAGGACAGGTA
AGAGATCAGGCTGAACATCTTAAGACAGCAGTACAAATGGCAGTATTCATCCACAATTTT
AAAAGAAAAGGGGGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCA
ACAGACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTCGGGTT
TATTACAGGGACAGCAGAGATCCAGTTTGGAAAGGACCAGCAAAGCTCCTCTGGAAAGGT
GAAGGGGCAGTAGTAATACAAGATAATAGTGACATAAAAGTAGTGCCAAGAAGAAAAGCA
AAGATCATCAGGGATTATGGAAAACAGATGGCAGGTGATGATTGTGTGGCAAGTAGACAG
GATGAGGATTAA
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP12497
UniProtKB Entry NamePOL_HV1N5
GenBank Protein ID328418
GenBank Gene IDM19921
General References
  1. Cosson P: Direct interaction between the envelope and matrix proteins of HIV-1. EMBO J. 1996 Nov 1;15(21):5783-8. [Article]
  2. Dong X, Li H, Derdowski A, Ding L, Burnett A, Chen X, Peters TR, Dermody TS, Woodruff E, Wang JJ, Spearman P: AP-3 directs the intracellular trafficking of HIV-1 Gag and plays a key role in particle assembly. Cell. 2005 Mar 11;120(5):663-74. [Article]
  3. Woodward CL, Prakobwanakit S, Mosessian S, Chow SA: Integrase interacts with nucleoporin NUP153 to mediate the nuclear import of human immunodeficiency virus type 1. J Virol. 2009 Jul;83(13):6522-33. doi: 10.1128/JVI.02061-08. Epub 2009 Apr 15. [Article]
  4. Bhatia AK, Kaushik R, Campbell NA, Pontow SE, Ratner L: Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail. Virology. 2009 Feb 5;384(1):233-41. doi: 10.1016/j.virol.2008.10.047. Epub 2008 Dec 6. [Article]
  5. Joshi A, Ablan SD, Soheilian F, Nagashima K, Freed EO: Evidence that productive human immunodeficiency virus type 1 assembly can occur in an intracellular compartment. J Virol. 2009 Jun;83(11):5375-87. doi: 10.1128/JVI.00109-09. Epub 2009 Mar 18. [Article]
  6. Samal AB, Ghanam RH, Fernandez TF, Monroe EB, Saad JS: NMR, biophysical, and biochemical studies reveal the minimal Calmodulin binding domain of the HIV-1 matrix protein. J Biol Chem. 2011 Sep 23;286(38):33533-43. doi: 10.1074/jbc.M111.273623. Epub 2011 Jul 28. [Article]
  7. Lee SK, Potempa M, Kolli M, Ozen A, Schiffer CA, Swanstrom R: Context surrounding processing sites is crucial in determining cleavage rate of a subset of processing sites in HIV-1 Gag and Gag-Pro-Pol polyprotein precursors by viral protease. J Biol Chem. 2012 Apr 13;287(16):13279-90. doi: 10.1074/jbc.M112.339374. Epub 2012 Feb 13. [Article]
  8. Matreyek KA, Yucel SS, Li X, Engelman A: Nucleoporin NUP153 phenylalanine-glycine motifs engage a common binding pocket within the HIV-1 capsid protein to mediate lentiviral infectivity. PLoS Pathog. 2013;9(10):e1003693. doi: 10.1371/journal.ppat.1003693. Epub 2013 Oct 10. [Article]
  9. Deshmukh L, Schwieters CD, Grishaev A, Ghirlando R, Baber JL, Clore GM: Structure and dynamics of full-length HIV-1 capsid protein in solution. J Am Chem Soc. 2013 Oct 30;135(43):16133-47. doi: 10.1021/ja406246z. Epub 2013 Oct 17. [Article]
  10. Chukkapalli V, Inlora J, Todd GC, Ono A: Evidence in support of RNA-mediated inhibition of phosphatidylserine-dependent HIV-1 Gag membrane binding in cells. J Virol. 2013 Jun;87(12):7155-9. doi: 10.1128/JVI.00075-13. Epub 2013 Apr 3. [Article]
  11. Dochi T, Nakano T, Inoue M, Takamune N, Shoji S, Sano K, Misumi S: Phosphorylation of human immunodeficiency virus type 1 capsid protein at serine 16, required for peptidyl-prolyl isomerase-dependent uncoating, is mediated by virion-incorporated extracellular signal-regulated kinase 2. J Gen Virol. 2014 May;95(Pt 5):1156-66. doi: 10.1099/vir.0.060053-0. Epub 2014 Feb 7. [Article]
  12. Vogt VM: Proteolytic processing and particle maturation. Curr Top Microbiol Immunol. 1996;214:95-131. [Article]
  13. Turner BG, Summers MF: Structural biology of HIV. J Mol Biol. 1999 Jan 8;285(1):1-32. [Article]
  14. Negroni M, Buc H: Mechanisms of retroviral recombination. Annu Rev Genet. 2001;35:275-302. [Article]
  15. Dunn BM, Goodenow MM, Gustchina A, Wlodawer A: Retroviral proteases. Genome Biol. 2002;3(4):REVIEWS3006. Epub 2002 Mar 26. [Article]
  16. Scarlata S, Carter C: Role of HIV-1 Gag domains in viral assembly. Biochim Biophys Acta. 2003 Jul 11;1614(1):62-72. [Article]
  17. Navia MA, Fitzgerald PM, McKeever BM, Leu CT, Heimbach JC, Herber WK, Sigal IS, Darke PL, Springer JP: Three-dimensional structure of aspartyl protease from human immunodeficiency virus HIV-1. Nature. 1989 Feb 16;337(6208):615-20. [Article]
  18. Wlodawer A, Miller M, Jaskolski M, Sathyanarayana BK, Baldwin E, Weber IT, Selk LM, Clawson L, Schneider J, Kent SB: Conserved folding in retroviral proteases: crystal structure of a synthetic HIV-1 protease. Science. 1989 Aug 11;245(4918):616-21. [Article]
  19. Fitzgerald PM, McKeever BM, VanMiddlesworth JF, Springer JP, Heimbach JC, Leu CT, Herber WK, Dixon RA, Darke PL: Crystallographic analysis of a complex between human immunodeficiency virus type 1 protease and acetyl-pepstatin at 2.0-A resolution. J Biol Chem. 1990 Aug 25;265(24):14209-19. [Article]
  20. Erickson J, Neidhart DJ, VanDrie J, Kempf DJ, Wang XC, Norbeck DW, Plattner JJ, Rittenhouse JW, Turon M, Wideburg N, et al.: Design, activity, and 2.8 A crystal structure of a C2 symmetric inhibitor complexed to HIV-1 protease. Science. 1990 Aug 3;249(4968):527-33. [Article]
  21. Ehrlich LS, Krausslich HG, Wimmer E, Carter CA: Expression in Escherichia coli and purification of human immunodeficiency virus type 1 capsid protein (p24). AIDS Res Hum Retroviruses. 1990 Oct;6(10):1169-75. [Article]
  22. Massiah MA, Starich MR, Paschall C, Summers MF, Christensen AM, Sundquist WI: Three-dimensional structure of the human immunodeficiency virus type 1 matrix protein. J Mol Biol. 1994 Nov 25;244(2):198-223. [Article]
  23. Chen Z, Li Y, Chen E, Hall DL, Darke PL, Culberson C, Shafer JA, Kuo LC: Crystal structure at 1.9-A resolution of human immunodeficiency virus (HIV) II protease complexed with L-735,524, an orally bioavailable inhibitor of the HIV proteases. J Biol Chem. 1994 Oct 21;269(42):26344-8. [Article]
  24. Dyda F, Hickman AB, Jenkins TM, Engelman A, Craigie R, Davies DR: Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science. 1994 Dec 23;266(5193):1981-6. [Article]
  25. Hill CP, Worthylake D, Bancroft DP, Christensen AM, Sundquist WI: Crystal structures of the trimeric human immunodeficiency virus type 1 matrix protein: implications for membrane association and assembly. Proc Natl Acad Sci U S A. 1996 Apr 2;93(7):3099-104. [Article]
  26. Gamble TR, Vajdos FF, Yoo S, Worthylake DK, Houseweart M, Sundquist WI, Hill CP: Crystal structure of human cyclophilin A bound to the amino-terminal domain of HIV-1 capsid. Cell. 1996 Dec 27;87(7):1285-94. [Article]
  27. Bujacz G, Alexandratos J, Qing ZL, Clement-Mella C, Wlodawer A: The catalytic domain of human immunodeficiency virus integrase: ordered active site in the F185H mutant. FEBS Lett. 1996 Dec 2;398(2-3):175-8. [Article]
  28. Gamble TR, Yoo S, Vajdos FF, von Schwedler UK, Worthylake DK, Wang H, McCutcheon JP, Sundquist WI, Hill CP: Structure of the carboxyl-terminal dimerization domain of the HIV-1 capsid protein. Science. 1997 Oct 31;278(5339):849-53. [Article]
  29. Cai M, Zheng R, Caffrey M, Craigie R, Clore GM, Gronenborn AM: Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat Struct Biol. 1997 Jul;4(7):567-77. [Article]
  30. Goldgur Y, Dyda F, Hickman AB, Jenkins TM, Craigie R, Davies DR: Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc Natl Acad Sci U S A. 1998 Aug 4;95(16):9150-4. [Article]
  31. Greenwald J, Le V, Butler SL, Bushman FD, Choe S: The mobility of an HIV-1 integrase active site loop is correlated with catalytic activity. Biochemistry. 1999 Jul 13;38(28):8892-8. [Article]
  32. Tang C, Ndassa Y, Summers MF: Structure of the N-terminal 283-residue fragment of the immature HIV-1 Gag polyprotein. Nat Struct Biol. 2002 Jul;9(7):537-43. [Article]
  33. Tang C, Loeliger E, Luncsford P, Kinde I, Beckett D, Summers MF: Entropic switch regulates myristate exposure in the HIV-1 matrix protein. Proc Natl Acad Sci U S A. 2004 Jan 13;101(2):517-22. Epub 2003 Dec 29. [Article]
  34. Saad JS, Miller J, Tai J, Kim A, Ghanam RH, Summers MF: Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly. Proc Natl Acad Sci U S A. 2006 Jul 25;103(30):11364-9. Epub 2006 Jul 13. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB02086(3,4-Dihydroxy-Phenyl)-Triphenyl-ArsoniumexperimentalunknownDetails
DB02994Cacodylic acidexperimentalunknownDetails
DB03118(2Z)-1-(5-Chloro-1H-indol-3-yl)-3-hydroxy-3-(1H-tetrazol-5-yl)-2-propen-1-oneexperimentalunknownDetails
DB03676Cystein-S-Yl CacodylateexperimentalunknownDetails
DB03963S-(Dimethylarsenic)CysteineexperimentalunknownDetails
DB075752,4-DIAMINO-1,5-DIPHENYL-3-HYDROXYPENTANEexperimentalunknownDetails
DB08027CAP-1experimentalunknownDetails
DB08231Myristic acidexperimentalunknownDetails