Rivoglitazone
Star0
This drug entry is a stub and has not been fully annotated. It is scheduled to be annotated soon.
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- Rivoglitazone
- DrugBank Accession Number
- DB09200
- Background
Rivoglitazone (INN) is a thiazolidinedione undergoing research for use in the treatment of type 2 diabetes. It is being developed by Daiichi Sankyo Co.
- Type
- Small Molecule
- Groups
- Experimental, Investigational
- Structure
- Weight
- Average: 397.45
Monoisotopic: 397.109627278 - Chemical Formula
- C20H19N3O4S
- Synonyms
- Rivoglitazone
Pharmacology
- Indication
Not Available
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Not Available
- Mechanism of action
Target Actions Organism APeroxisome proliferator-activated receptor gamma agonistHumans - Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
- Not Available
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Not Available
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.
Drug Interaction Integrate drug-drug
interactions in your softwareAbametapir The serum concentration of Rivoglitazone can be increased when it is combined with Abametapir. Abatacept The metabolism of Rivoglitazone can be increased when combined with Abatacept. Abiraterone The metabolism of Rivoglitazone can be decreased when combined with Abiraterone. Acarbose The risk or severity of hypoglycemia can be increased when Acarbose is combined with Rivoglitazone. Acebutolol The therapeutic efficacy of Rivoglitazone can be increased when used in combination with Acebutolol. - Food Interactions
- Not Available
Categories
- Drug Categories
- Blood Glucose Lowering Agents
- Cytochrome P-450 CYP2C8 Inhibitors
- Cytochrome P-450 CYP2C8 Inhibitors (strength unknown)
- Cytochrome P-450 CYP2C8 Substrates
- Cytochrome P-450 CYP3A Substrates
- Cytochrome P-450 CYP3A4 Substrates
- Cytochrome P-450 Enzyme Inhibitors
- Cytochrome P-450 Substrates
- Sulfur Compounds
- Thiazoles
- Thiazolidinediones
- Chemical TaxonomyProvided by Classyfire
- Description
- This compound belongs to the class of organic compounds known as benzimidazoles. These are organic compounds containing a benzene ring fused to an imidazole ring (five member ring containing a nitrogen atom, 4 carbon atoms, and two double bonds).
- Kingdom
- Organic compounds
- Super Class
- Organoheterocyclic compounds
- Class
- Benzimidazoles
- Sub Class
- Not Available
- Direct Parent
- Benzimidazoles
- Alternative Parents
- Phenoxy compounds / Anisoles / Thiazolidinediones / Alkyl aryl ethers / N-substituted imidazoles / Heteroaromatic compounds / Dicarboximides / Thiocarbamic acid derivatives / Organic carbonic acids and derivatives / Azacyclic compounds show 5 more
- Substituents
- Alkyl aryl ether / Anisole / Aromatic heteropolycyclic compound / Azacycle / Azole / Benzenoid / Benzimidazole / Carbonic acid derivative / Carbonyl group / Carboxylic acid derivative show 18 more
- Molecular Framework
- Aromatic heteropolycyclic compounds
- External Descriptors
- Not Available
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- 3A3N0634Q6
- CAS number
- 185428-18-6
- InChI Key
- XMSXOLDPMGMWTH-UHFFFAOYSA-N
- InChI
- InChI=1S/C20H19N3O4S/c1-23-16-10-14(26-2)7-8-15(16)21-18(23)11-27-13-5-3-12(4-6-13)9-17-19(24)22-20(25)28-17/h3-8,10,17H,9,11H2,1-2H3,(H,22,24,25)
- IUPAC Name
- 5-({4-[(6-methoxy-1-methyl-1H-1,3-benzodiazol-2-yl)methoxy]phenyl}methyl)-1,3-thiazolidine-2,4-dione
- SMILES
- COC1=CC=C2N=C(COC3=CC=C(CC4SC(=O)NC4=O)C=C3)N(C)C2=C1
References
- General References
- Kong AP, Yamasaki A, Ozaki R, Saito H, Asami T, Ohwada S, Ko GT, Wong CK, Leung GT, Lee KF, Yeung CY, Chan JC: A randomized-controlled trial to investigate the effects of rivoglitazone, a novel PPAR gamma agonist on glucose-lipid control in type 2 diabetes. Diabetes Obes Metab. 2011 Sep;13(9):806-13. doi: 10.1111/j.1463-1326.2011.01411.x. [Article]
- Schimke K, Davis TM: Drug evaluation: rivoglitazone, a new oral therapy for the treatment of type 2 diabetes. Curr Opin Investig Drugs. 2007 Apr;8(4):338-44. [Article]
- External Links
- PubChem Compound
- 3055168
- PubChem Substance
- 310265108
- ChemSpider
- 2316729
- ChEMBL
- CHEMBL2104753
- PDBe Ligand
- 7VA
- Wikipedia
- Rivoglitazone
- PDB Entries
- 5u5l
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data3 Completed Treatment Type 2 Diabetes Mellitus 1 somestatus stop reason just information to hide 2, 3 Completed Treatment Type 2 Diabetes Mellitus 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
Property Value Source Water Solubility 0.0388 mg/mL ALOGPS logP 3.13 ALOGPS logP 2.81 Chemaxon logS -4 ALOGPS pKa (Strongest Acidic) 6.62 Chemaxon pKa (Strongest Basic) 4.9 Chemaxon Physiological Charge -1 Chemaxon Hydrogen Acceptor Count 5 Chemaxon Hydrogen Donor Count 1 Chemaxon Polar Surface Area 82.45 Å2 Chemaxon Rotatable Bond Count 6 Chemaxon Refractivity 105.33 m3·mol-1 Chemaxon Polarizability 41.96 Å3 Chemaxon Number of Rings 4 Chemaxon Bioavailability 1 Chemaxon Rule of Five Yes Chemaxon Ghose Filter Yes Chemaxon Veber's Rule No Chemaxon MDDR-like Rule Yes Chemaxon - Predicted ADMET Features
- Not Available
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
Spectrum Spectrum Type Splash Key Predicted MS/MS Spectrum - 10V, Positive (Annotated) Predicted LC-MS/MS splash10-0002-0009000000-8093ddbdacb28c986755 Predicted MS/MS Spectrum - 10V, Negative (Annotated) Predicted LC-MS/MS splash10-0udi-0291000000-e9f52ee6c986ad2c51bf Predicted MS/MS Spectrum - 20V, Positive (Annotated) Predicted LC-MS/MS splash10-004i-0019000000-5a4737377e8f722802d6 Predicted MS/MS Spectrum - 20V, Negative (Annotated) Predicted LC-MS/MS splash10-0fwc-6209000000-b0707cb5812c8928b76b Predicted MS/MS Spectrum - 40V, Positive (Annotated) Predicted LC-MS/MS splash10-014i-0912000000-6cc75b51610391917191 Predicted MS/MS Spectrum - 40V, Negative (Annotated) Predicted LC-MS/MS splash10-0udl-6719000000-02fdc46e214c76af7b1a Predicted 1H NMR Spectrum 1D NMR Not Applicable Predicted 13C NMR Spectrum 1D NMR Not Applicable - Chromatographic Properties
Collision Cross Sections (CCS)
Adduct CCS Value (Å2) Source type Source [M-H]- 196.42268 predictedDeepCCS 1.0 (2019) [M+H]+ 198.78069 predictedDeepCCS 1.0 (2019) [M+Na]+ 205.5622 predictedDeepCCS 1.0 (2019)
Targets
Build, predict & validate machine-learning models
Use our structured and evidence-based datasets to unlock newinsights and accelerate drug research.
Use our structured and evidence-based datasets to unlock new insights and accelerate drug research.
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Yes
- Actions
- Agonist
- General Function
- Nuclear receptor that binds peroxisome proliferators such as hypolipidemic drugs and fatty acids. Once activated by a ligand, the nuclear receptor binds to DNA specific PPAR response elements (PPRE) and modulates the transcription of its target genes, such as acyl-CoA oxidase. It therefore controls the peroxisomal beta-oxidation pathway of fatty acids. Key regulator of adipocyte differentiation and glucose homeostasis. ARF6 acts as a key regulator of the tissue-specific adipocyte P2 (aP2) enhancer. Acts as a critical regulator of gut homeostasis by suppressing NF-kappa-B-mediated pro-inflammatory responses. Plays a role in the regulation of cardiovascular circadian rhythms by regulating the transcription of BMAL1 in the blood vessels (By similarity)
- Specific Function
- alpha-actinin binding
- Gene Name
- PPARG
- Uniprot ID
- P37231
- Uniprot Name
- Peroxisome proliferator-activated receptor gamma
- Molecular Weight
- 57619.58 Da
References
- Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F: TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res. 2024 Jan 5;52(D1):D1465-D1477. doi: 10.1093/nar/gkad751. [Article]
Enzymes
1. DetailsCytochrome P450 3A4
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- Substrate
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of sterols, steroid hormones, retinoids and fatty acids (PubMed:10681376, PubMed:11093772, PubMed:11555828, PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:19965576, PubMed:20702771, PubMed:21490593, PubMed:21576599). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase). Catalyzes the hydroxylation of carbon-hydrogen bonds (PubMed:12865317, PubMed:14559847, PubMed:15373842, PubMed:15764715, PubMed:21490593, PubMed:21576599, PubMed:2732228). Exhibits high catalytic activity for the formation of hydroxyestrogens from estrone (E1) and 17beta-estradiol (E2), namely 2-hydroxy E1 and E2, as well as D-ring hydroxylated E1 and E2 at the C-16 position (PubMed:11555828, PubMed:12865317, PubMed:14559847). Plays a role in the metabolism of androgens, particularly in oxidative deactivation of testosterone (PubMed:15373842, PubMed:15764715, PubMed:22773874, PubMed:2732228). Metabolizes testosterone to less biologically active 2beta- and 6beta-hydroxytestosterones (PubMed:15373842, PubMed:15764715, PubMed:2732228). Contributes to the formation of hydroxycholesterols (oxysterols), particularly A-ring hydroxylated cholesterol at the C-4beta position, and side chain hydroxylated cholesterol at the C-25 position, likely contributing to cholesterol degradation and bile acid biosynthesis (PubMed:21576599). Catalyzes bisallylic hydroxylation of polyunsaturated fatty acids (PUFA) (PubMed:9435160). Catalyzes the epoxidation of double bonds of PUFA with a preference for the last double bond (PubMed:19965576). Metabolizes endocannabinoid arachidonoylethanolamide (anandamide) to 8,9-, 11,12-, and 14,15-epoxyeicosatrienoic acid ethanolamides (EpETrE-EAs), potentially modulating endocannabinoid system signaling (PubMed:20702771). Plays a role in the metabolism of retinoids. Displays high catalytic activity for oxidation of all-trans-retinol to all-trans-retinal, a rate-limiting step for the biosynthesis of all-trans-retinoic acid (atRA) (PubMed:10681376). Further metabolizes atRA toward 4-hydroxyretinoate and may play a role in hepatic atRA clearance (PubMed:11093772). Responsible for oxidative metabolism of xenobiotics. Acts as a 2-exo-monooxygenase for plant lipid 1,8-cineole (eucalyptol) (PubMed:11159812). Metabolizes the majority of the administered drugs. Catalyzes sulfoxidation of the anthelmintics albendazole and fenbendazole (PubMed:10759686). Hydroxylates antimalarial drug quinine (PubMed:8968357). Acts as a 1,4-cineole 2-exo-monooxygenase (PubMed:11695850). Also involved in vitamin D catabolism and calcium homeostasis. Catalyzes the inactivation of the active hormone calcitriol (1-alpha,25-dihydroxyvitamin D(3)) (PubMed:29461981)
- Specific Function
- 1,8-cineole 2-exo-monooxygenase activity
- Gene Name
- CYP3A4
- Uniprot ID
- P08684
- Uniprot Name
- Cytochrome P450 3A4
- Molecular Weight
- 57342.67 Da
References
- Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther. 2005 May;77(5):404-14. doi: 10.1016/j.clpt.2004.12.266. [Article]
2. DetailsCytochrome P450 2C8
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- No
- Actions
- SubstrateInhibitor
- General Function
- A cytochrome P450 monooxygenase involved in the metabolism of various endogenous substrates, including fatty acids, steroid hormones and vitamins (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Mechanistically, uses molecular oxygen inserting one oxygen atom into a substrate, and reducing the second into a water molecule, with two electrons provided by NADPH via cytochrome P450 reductase (NADPH--hemoprotein reductase) (PubMed:11093772, PubMed:14559847, PubMed:15766564, PubMed:19965576, PubMed:7574697). Primarily catalyzes the epoxidation of double bonds of polyunsaturated fatty acids (PUFA) with a preference for the last double bond (PubMed:15766564, PubMed:19965576, PubMed:7574697). Catalyzes the hydroxylation of carbon-hydrogen bonds. Metabolizes all trans-retinoic acid toward its 4-hydroxylated form (PubMed:11093772). Displays 16-alpha hydroxylase activity toward estrogen steroid hormones, 17beta-estradiol (E2) and estrone (E1) (PubMed:14559847). Plays a role in the oxidative metabolism of xenobiotics. It is the principal enzyme responsible for the metabolism of the anti-cancer drug paclitaxel (taxol) (PubMed:26427316)
- Specific Function
- arachidonic acid epoxygenase activity
- Gene Name
- CYP2C8
- Uniprot ID
- P10632
- Uniprot Name
- Cytochrome P450 2C8
- Molecular Weight
- 55824.275 Da
References
- Jaakkola T, Backman JT, Neuvonen M, Neuvonen PJ: Effects of gemfibrozil, itraconazole, and their combination on the pharmacokinetics of pioglitazone. Clin Pharmacol Ther. 2005 May;77(5):404-14. doi: 10.1016/j.clpt.2004.12.266. [Article]
- Sahi J, Black CB, Hamilton GA, Zheng X, Jolley S, Rose KA, Gilbert D, LeCluyse EL, Sinz MW: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab Dispos. 2003 Apr;31(4):439-46. [Article]
Drug created at October 16, 2015 22:18 / Updated at August 26, 2024 19:23