Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation.

Article Details

Citation

Chung J, Khadka P, Chung IK

Nuclear import of hTERT requires a bipartite nuclear localization signal and Akt-mediated phosphorylation.

J Cell Sci. 2012 Jun 1;125(Pt 11):2684-97. doi: 10.1242/jcs.099267. Epub 2012 Feb 24.

PubMed ID
22366458 [ View in PubMed
]
Abstract

Sustained cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity and protection. Although nuclear import of telomerase transcriptase (hTERT) is required for telomerase activity to elongate telomeres in vivo, the molecular mechanism regulating nuclear localization of hTERT is unclear. We have identified a bipartite nuclear localization signal (NLS; amino acid residues 222-240) that is responsible for nuclear import of hTERT. Immunofluorescence imaging of hTERT revealed that mutations in any of the bipartite NLS sequences result in decreased nuclear fluorescence intensity compared with wild-type hTERT. We also show that Akt-mediated phosphorylation at serine 227 is necessary for directing nuclear translocation of hTERT. Interestingly, serine 227 is located between two clusters of basic amino acids in the bipartite NLS. Inactivation of Akt activity by a dominant-negative mutant or wortmannin treatment attenuated nuclear localization of hTERT. We further show that both bipartite NLS and serine 227 in hTERT are required for cell immortalization of normal human foreskin fibroblast cells. Taken together, our findings reveal a previously unknown regulatory mechanism for nuclear import of hTERT through a bipartite NLS mediated by Akt phosphorylation, which represents an alternative pathway for modulating telomerase activity in cancer.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Telomerase reverse transcriptaseO14746Details