Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C.

Article Details

Citation

Romi H, Cohen I, Landau D, Alkrinawi S, Yerushalmi B, Hershkovitz R, Newman-Heiman N, Cutting GR, Ofir R, Sivan S, Birk OS

Meconium ileus caused by mutations in GUCY2C, encoding the CFTR-activating guanylate cyclase 2C.

Am J Hum Genet. 2012 May 4;90(5):893-9. doi: 10.1016/j.ajhg.2012.03.022. Epub 2012 Apr 19.

PubMed ID
22521417 [ View in PubMed
]
Abstract

Meconium ileus, intestinal obstruction in the newborn, is caused in most cases by CFTR mutations modulated by yet-unidentified modifier genes. We now show that in two unrelated consanguineous Bedouin kindreds, an autosomal-recessive phenotype of meconium ileus that is not associated with cystic fibrosis (CF) is caused by different homozygous mutations in GUCY2C, leading to a dramatic reduction or fully abrogating the enzymatic activity of the encoded guanlyl cyclase 2C. GUCY2C is a transmembrane receptor whose extracellular domain is activated by either the endogenous ligands, guanylin and related peptide uroguanylin, or by an external ligand, Escherichia coli (E. coli) heat-stable enterotoxin STa. GUCY2C is expressed in the human intestine, and the encoded protein activates the CFTR protein through local generation of cGMP. Thus, GUCY2C is a likely candidate modifier of the meconium ileus phenotype in CF. Because GUCY2C heterozygous and homozygous mutant mice are resistant to E. coli STa enterotoxin-induced diarrhea, it is plausible that GUCY2C mutations in the desert-dwelling Bedouin kindred are of selective advantage.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Heat-stable enterotoxin receptorP25092Details