Modulation of A-type potassium channels by a family of calcium sensors.

Article Details

Citation

An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ

Modulation of A-type potassium channels by a family of calcium sensors.

Nature. 2000 Feb 3;403(6769):553-6.

PubMed ID
10676964 [ View in PubMed
]
Abstract

In the brain and heart, rapidly inactivating (A-type) voltage-gated potassium (Kv) currents operate at subthreshold membrane potentials to control the excitability of neurons and cardiac myocytes. Although pore-forming alpha-subunits of the Kv4, or Shal-related, channel family form A-type currents in heterologous cells, these differ significantly from native A-type currents. Here we describe three Kv channel-interacting proteins (KChIPs) that bind to the cytoplasmic amino termini of Kv4 alpha-subunits. We find that expression of KChIP and Kv4 together reconstitutes several features of native A-type currents by modulating the density, inactivation kinetics and rate of recovery from inactivation of Kv4 channels in heterologous cells. All three KChIPs co-localize and co-immunoprecipitate with brain Kv4 alpha-subunits, and are thus integral components of native Kv4 channel complexes. The KChIPs have four EF-hand-like domains and bind calcium ions. As the activity and density of neuronal A-type currents tightly control responses to excitatory synaptic inputs, these KChIPs may regulate A-type currents, and hence neuronal excitability, in response to changes in intracellular calcium.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Potassium voltage-gated channel subfamily D member 2Q9NZV8Details