Tachykinin regulation of airway smooth muscle cell proliferation.

Article Details

Citation

Noveral JP, Grunstein MM

Tachykinin regulation of airway smooth muscle cell proliferation.

Am J Physiol. 1995 Sep;269(3 Pt 1):L339-43.

PubMed ID
7573467 [ View in PubMed
]
Abstract

The tachykinins, substance P (SP) and neurokinins A (NKA) and B (NKB), have been identified in the respiratory tract and implicated in mediating neurogenic inflammation of the airways. To the extent that these neuropeptides may be involved in the pathogenesis of asthma, a condition associated with hyperplasia of airway smooth muscle (ASM), we examined the mitogenic effects and mechanisms of action of tachykinins in cultured rabbit ASM cells. SP was found to elicit dose-dependent (10(-14) to 10(-4) M) stimulation of ASM cell proliferation, with a mean (+/- SE) maximal increase in cell number of 169 +/- 6.1% of control. In contrast, NKA and NKB had little and no effect on ASM cell growth, respectively. Because SP is nonselective in its binding to the tachykinin receptors, to identify the specific NK receptor subtype(s) mediating the promitogenic action of SP, in separate studies we found that 1) the NK1-receptor-specific agonist, [beta-Ala4, Sar9, Met(O2)11]SP-(4-11) induced stimulation of ASM cell growth similar in magnitude to that elicited by SP; 2) in contrast, neither the NK1- nor NK2-receptor-specific agonists, [beta-Ala8]NKA-(4-10) and [MePhe7]NKB, respectively, had any effect on ASM cell growth; and 3) the promitogenic action of SP was inhibited by the NK1-receptor antagonist, GR-82,334. Moreover, in extended experiments, we found that the phospholipase C and phospholipase A2 inhibitors, neomycin and quinacrine, respectively, each inhibited SP-induced ASM cell proliferation by approximately 45%. Collectively, these observations provide new evidence that the tachykinin SP induces ASM cell proliferation, and that this action is mediated by transmembrane signaling coupled to selective activation of the NK1 receptor.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
QuinacrineInactive phospholipase C-like protein 1ProteinHumans
Yes
Inhibitor
Details