The pharmacokinetics of mifepristone in humans reveal insights into differential mechanisms of antiprogestin action.

Article Details

Citation

Heikinheimo O, Kekkonen R, Lahteenmaki P

The pharmacokinetics of mifepristone in humans reveal insights into differential mechanisms of antiprogestin action.

Contraception. 2003 Dec;68(6):421-6.

PubMed ID
14698071 [ View in PubMed
]
Abstract

The pharmacokinetics of mifepristone is characterized by rapid absorption, a long half-life of 25-30 h, and high micromolar serum concentrations following ingestion of doses of >/=100 mg of the drug. The serum transport protein-alpha 1-acid glycoprotein (AAG)-regulates the serum kinetics of mifepristone in man. Binding to AAG limits the tissue availability of mifepristone, explaining its low volume of distribution and low metabolic clearance rate of 0.55 L/kg per day. In addition, the similar serum levels of mifepristone following ingestion of single doses exceeding 100 mg can be explained by saturation of the binding capacity of serum AAG. Mifepristone is extensively metabolized by demethylation and hydroxylation, the initial metabolic steps being catalyzed by the cytochrome P-450 enzyme CYP3A4. The three most proximal metabolites, namely, monodemethylated, didemethylated and hydroxylated metabolites of mifepristone, all retain considerable affinity toward human progesterone and glucocorticoid receptors. Also, the serum levels of these three metabolites are in ranges similar to those of the parent mifepristone. Thus, the combined pool of mifepristone-plus its metabolites-seems to be responsible for the biological actions of mifepristone. Recent clinical studies on pregnancy termination and emergency contraception have focused on optimization of the dose of mifepristone. In these studies it has become apparent that the doses efficient for pregnancy termination differ from those needed in emergency contraception-mifepristone is effective in emergency contraception at a dose of 10 mg, which results in linear pharmacokinetics. However, the >/=200 mg doses of mifepristone needed for optimal abortifacient effects of mifepristone result in saturation of serum AAG and thus nonlinear pharmacokinetics. In view of the pharmacokinetic data, it may be speculated that dosing of mifepristone for pregnancy termination and for emergency contraception could be reduced to approximately 100 mg and 2-5 mg, respectively. It remains to be seen whether the newly synthesized, more selective antiprogestins will prove more efficacious in the clinical arena.

DrugBank Data that Cites this Article

Drugs