Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production.

Article Details

Citation

Dao DN, Sweeney K, Hsu T, Gurcha SS, Nascimento IP, Roshevsky D, Besra GS, Chan J, Porcelli SA, Jacobs WR

Mycolic acid modification by the mmaA4 gene of M. tuberculosis modulates IL-12 production.

PLoS Pathog. 2008 Jun 6;4(6):e1000081. doi: 10.1371/journal.ppat.1000081.

PubMed ID
18535659 [ View in PubMed
]
Abstract

Mycobacterium tuberculosis has evolved many strategies to evade elimination by the host immune system, including the selective repression of macrophage IL-12p40 production. To identify the M. tuberculosis genes responsible for this aspect of immune evasion, we used a macrophage cell line expressing a reporter for IL-12p40 transcription to screen a transposon library of M. tuberculosis for mutants that lacked this function. This approach led to the identification of the mmaA4 gene, which encodes a methyl transferase required for introducing the distal oxygen-containing modifications of mycolic acids, as a key locus involved in the repression of IL-12p40. Mutants in which mmaA4 (hma) was inactivated stimulated macrophages to produce significantly more IL-12p40 and TNF-alpha than wild-type M. tuberculosis and were attenuated for virulence. This attenuation was not seen in IL-12p40-deficient mice, consistent with a direct linkage between enhanced stimulation of IL-12p40 by the mutant and its reduced virulence. Treatment of macrophages with trehalose dimycolate (TDM) purified from the DeltammaA4 mutant stimulated increased IL-12p40, similar to the increase observed from DeltammaA4 mutant-infected macrophages. In contrast, purified TDM isolated from wild-type M. tuberculosis inhibited production of IL-12p40 by macrophages. These findings strongly suggest that M. tuberculosis has evolved mmaA4-derived mycolic acids, including those incorporated into TDM to manipulate IL-12-mediated immunity and virulence.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Hydroxymycolate synthase MmaA4Q79FX8Details