MazF-induced growth inhibition and persister generation in Escherichia coli.

Article Details

Citation

Tripathi A, Dewan PC, Siddique SA, Varadarajan R

MazF-induced growth inhibition and persister generation in Escherichia coli.

J Biol Chem. 2014 Feb 14;289(7):4191-205. doi: 10.1074/jbc.M113.510511. Epub 2013 Dec 27.

PubMed ID
24375411 [ View in PubMed
]
Abstract

Toxin-antitoxin systems are ubiquitous in nature and present on the chromosomes of both bacteria and archaea. MazEF is a type II toxin-antitoxin system present on the chromosome of Escherichia coli and other bacteria. Whether MazEF is involved in programmed cell death or reversible growth inhibition and bacterial persistence is a matter of debate. In the present work the role of MazF in bacterial physiology was studied by using an inactive, active-site mutant of MazF, E24A, to activate WT MazF expression from its own promoter. The ectopic expression of E24A MazF in a strain containing WT mazEF resulted in reversible growth arrest. Normal growth resumed on inhibiting the expression of E24A MazF. MazF-mediated growth arrest resulted in an increase in survival of bacterial cells during antibiotic stress. This was studied by activation of mazEF either by overexpression of an inactive, active-site mutant or pre-exposure to a sublethal dose of antibiotic. The MazF-mediated persistence phenotype was found to be independent of RecA and dependent on the presence of the ClpP and Lon proteases. This study confirms the role of MazEF in reversible growth inhibition and persistence.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
ATP-dependent Clp protease proteolytic subunitP0A6G7Details