Molecular mechanism of calcium channel block by isradipine. Role of a drug-induced inactivated channel conformation.

Article Details

Citation

Berjukow S, Marksteiner R, Gapp F, Sinnegger MJ, Hering S

Molecular mechanism of calcium channel block by isradipine. Role of a drug-induced inactivated channel conformation.

J Biol Chem. 2000 Jul 21;275(29):22114-20.

PubMed ID
10766758 [ View in PubMed
]
Abstract

The role of the inactivated channel conformation in the molecular mechanism of Ca(2+) channel block by the 1,4-dihydropyridine (DHP) (+)-isradipine was analyzed in L-type channel constructs (alpha(1Lc); Berjukow, S., Gapp, F., Aczel, S., Sinnegger, M. J., Mitterdorfer, J., Glossmann, H., and Hering, S. (1999) J. Biol. Chem. 274, 6154-6160) and a DHP-sensitive class A Ca(2+) channel mutant (alpha(1A-DHP); Sinnegger, M. J., Wang, Z., Grabner, M., Hering, S., Striessnig, J., Glossmann, H., and Mitterdorfer, J. (1997) J. Biol. Chem. 272, 27686-27693) carrying the high affinity determinants of the DHP receptor site but inactivating at different rates. Ca(2+) channel inactivation was modulated by coexpressing the alpha(1A-DHP)- or alpha(1Lc)-subunits in Xenopus oocytes with either the beta(2a)- or the beta(1a)-subunit and amino acid substitutions in L-type segment IVS6 (I1497A, I1498A, and V1504A). Contrary to a modulated receptor mechanism assuming high affinity DHP binding to the inactivated state we observed no clear correlation between steady state inactivation and Ca(2+) channel block by (+)-isradipine: (i) a 3-fold larger fraction of alpha(1A-DHP)/beta(1a) channels in steady state inactivation at -80 mV (compared with alpha(1A-DHP)/beta(2a)) did not enhance the block by (+)-isradipine; (ii) different steady state inactivation of alpha(1Lc) mutants at -30 mV did not correlate with voltage-dependent channel block; and (iii) the midpoint-voltages of the inactivation curves of slowly inactivating L-type constructs and more rapidly inactivating alpha(1Lc)/beta(1a) channels were shifted to a comparable extent to more hyperpolarized voltages. A kinetic analysis of (+)-isradipine interaction with different L-type channel constructs revealed a drug-induced inactivated state. Entry and recovery from drug-induced inactivation are modulated by intrinsic inactivation determinants, suggesting a synergism between intrinsic inactivation and DHP block.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
IsradipineVoltage-dependent L-type calcium channel subunit alpha-1CProteinHumans
Yes
Inhibitor
Details