Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting.

Article Details

Citation

Spriet LL, Tunstall RJ, Watt MJ, Mehan KA, Hargreaves M, Cameron-Smith D

Pyruvate dehydrogenase activation and kinase expression in human skeletal muscle during fasting.

J Appl Physiol (1985). 2004 Jun;96(6):2082-7. Epub 2004 Feb 13.

PubMed ID
14966024 [ View in PubMed
]
Abstract

Fasting forces adaptive changes in whole body and skeletal muscle metabolism that increase fat oxidation and decrease the oxidation of carbohydrate. We tested the hypothesis that 40 h of fasting would decrease pyruvate dehydrogenase (PDH) activity and increase PDH kinase (PDK) isoform mRNA expression in human skeletal muscle. The putative transcriptional activators of PDK isozymes, peroxisome proliferator-activated receptor-alpha (PPAR-alpha) protein, and forkhead homolog in rhabdomyosarcoma (FKHR) mRNA were also measured. Eleven healthy adults fasted after a standard meal (25% fat, 60% carbohydrate, 15% protein) with blood and skeletal muscle samples taken at 3, 15, and 40 h postprandial. Fasting increased plasma free fatty acid, glycerol, and beta-hydroxybutyrate concentrations and decreased glucose and insulin concentrations. PDH activity decreased from 0.88 +/- 0.11 mmol acetyl-CoA. min(-1). kg wet muscle wt(-1) at 3 h to 0.62 +/- 0.10 (P = not significant) and 0.39 +/- 0.06 (P < 0.05) mmol. min(-1). kg wet mass(-1) after 15 and 40 h of fasting. Although all four PDK isoforms were expressed in human skeletal muscle, PDK-2 and -4 mRNA were the most abundant. PDK-1 and -3 mRNA abundance was approximately 1 and 15% of the PDK-2 and -4 levels, respectively. The 40-h fast had no effect on PDK-1, -2, and -3 mRNA expression. PDK-4 mRNA was significantly increased approximately 3-fold after 15 h and approximately 14-fold after 40 h of fasting. Skeletal muscle PPAR-alpha protein and FKHR mRNA abundance were unaffected by the fast. The results suggest that decreased PDH activation after 40 h of fasting may have been a function of the large increase in PDK-4 mRNA expression and possible subsequent increase in PDK protein and activity. The changes in PDK-4 expression and PDH activity did not coincide with increases in the transcriptional activators PPAR-alpha and FKHR.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
[Pyruvate dehydrogenase (acetyl-transferring)] kinase isozyme 4, mitochondrialQ16654Details