De novo KCNB1 mutations in epileptic encephalopathy.

Article Details

Citation

Torkamani A, Bersell K, Jorge BS, Bjork RL Jr, Friedman JR, Bloss CS, Cohen J, Gupta S, Naidu S, Vanoye CG, George AL Jr, Kearney JA

De novo KCNB1 mutations in epileptic encephalopathy.

Ann Neurol. 2014 Oct;76(4):529-40. doi: 10.1002/ana.24263. Epub 2014 Sep 19.

PubMed ID
25164438 [ View in PubMed
]
Abstract

OBJECTIVE: Numerous studies have demonstrated increased load of de novo copy number variants or single nucleotide variants in individuals with neurodevelopmental disorders, including epileptic encephalopathies, intellectual disability, and autism. METHODS: We searched for de novo mutations in a family quartet with a sporadic case of epileptic encephalopathy with no known etiology to determine the underlying cause using high-coverage whole exome sequencing (WES) and lower-coverage whole genome sequencing. Mutations in additional patients were identified by WES. The effect of mutations on protein function was assessed in a heterologous expression system. RESULTS: We identified a de novo missense mutation in KCNB1 that encodes the KV 2.1 voltage-gated potassium channel. Functional studies demonstrated a deleterious effect of the mutation on KV 2.1 function leading to a loss of ion selectivity and gain of a depolarizing inward cation conductance. Subsequently, we identified 2 additional patients with epileptic encephalopathy and de novo KCNB1 missense mutations that cause a similar pattern of KV 2.1 dysfunction. INTERPRETATION: Our genetic and functional evidence demonstrate that KCNB1 mutation can result in early onset epileptic encephalopathy. This expands the locus heterogeneity associated with epileptic encephalopathies and suggests that clinical WES may be useful for diagnosis of epileptic encephalopathies of unknown etiology.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Potassium voltage-gated channel subfamily B member 1Q14721Details