Structural basis for compound C inhibition of the human AMP-activated protein kinase alpha2 subunit kinase domain.
Article Details
- CitationCopy to clipboard
Handa N, Takagi T, Saijo S, Kishishita S, Takaya D, Toyama M, Terada T, Shirouzu M, Suzuki A, Lee S, Yamauchi T, Okada-Iwabu M, Iwabu M, Kadowaki T, Minokoshi Y, Yokoyama S
Structural basis for compound C inhibition of the human AMP-activated protein kinase alpha2 subunit kinase domain.
Acta Crystallogr D Biol Crystallogr. 2011 May;67(Pt 5):480-7. doi: 10.1107/S0907444911010201. Epub 2011 Apr 14.
- PubMed ID
- 21543851 [ View in PubMed]
- Abstract
AMP-activated protein kinase (AMPK) is a serine/threonine kinase that functions as a sensor to maintain energy balance at both the cellular and the whole-body levels and is therefore a potential target for drug design against metabolic syndrome, obesity and type 2 diabetes. Here, the crystal structure of the phosphorylated-state mimic T172D mutant kinase domain from the human AMPK alpha2 subunit is reported in the apo form and in complex with a selective inhibitor, compound C. The AMPK alpha2 kinase domain exhibits a typical bilobal kinase fold and exists as a monomer in the crystal. Like the wild-type apo form, the T172D mutant apo form adopts the autoinhibited structure of the `DFG-out' conformation, with the Phe residue of the DFG motif anchored within the putative ATP-binding pocket. Compound C binding dramatically alters the conformation of the activation loop, which adopts an intermediate conformation between DFG-out and DFG-in. This induced fit forms a compound-C binding pocket composed of the N-lobe, the C-lobe and the hinge of the kinase domain. The pocket partially overlaps with the putative ATP-binding pocket. These three-dimensional structures will be useful to guide drug discovery.