Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase.

Article Details

Citation

Ohya K, Kajigaya S, Kitanaka A, Yoshida K, Miyazato A, Yamashita Y, Yamanaka T, Ikeda U, Shimada K, Ozawa K, Mano H

Molecular cloning of a docking protein, BRDG1, that acts downstream of the Tec tyrosine kinase.

Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11976-81.

PubMed ID
10518561 [ View in PubMed
]
Abstract

Tec, Btk, Itk, Bmx, and Txk constitute the Tec family of protein tyrosine kinases (PTKs), a family with the distinct feature of containing a pleckstrin homology (PH) domain. Tec acts in signaling pathways triggered by the B cell antigen receptor (BCR), cytokine receptors, integrins, and receptor-type PTKs. Although upstream regulators of Tec family kinases are relatively well characterized, little is known of the downstream effectors of these enzymes. The yeast two-hybrid system has identified several proteins that interact with the kinase domain of Tec, one of which is now revealed to be a previously unknown docking protein termed BRDG1 (BCR downstream signaling 1). BRDG1 contains a proline-rich motif, a PH domain, and multiple tyrosine residues that are potential target sites for Src homology 2 domains. In 293 cells expressing recombinant BRDG1 and various PTKs, Tec and Pyk2, but not Btk, Bmx, Lyn, Syk, or c-Abl, induced marked phosphorylation of BRDG1 on tyrosine residues. BRDG1 was also phosphorylated by Tec directly in vitro. Efficient phosphorylation of BRDG1 by Tec required the PH and SH2 domains as well as the kinase domain of the latter. Furthermore, BRDG1 was shown to participate in a positive feedback loop by increasing the activity of Tec. BRDG1 transcripts are abundant in the human B cell line Ramos, and the endogenous protein underwent tyrosine phosphorylation in response to BCR stimulation. BRDG1 thus appears to function as a docking protein acting downstream of Tec in BCR signaling.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Tyrosine-protein kinase TecP42680Details