Novel mutations in the KCND3-encoded Kv4.3 K+ channel associated with autopsy-negative sudden unexplained death.

Article Details

Citation

Giudicessi JR, Ye D, Kritzberger CJ, Nesterenko VV, Tester DJ, Antzelevitch C, Ackerman MJ

Novel mutations in the KCND3-encoded Kv4.3 K+ channel associated with autopsy-negative sudden unexplained death.

Hum Mutat. 2012 Jun;33(6):989-97. doi: 10.1002/humu.22058. Epub 2012 Mar 27.

PubMed ID
22457051 [ View in PubMed
]
Abstract

Heritable arrhythmia syndromes, including Brugada syndrome (BrS) and idiopathic ventricular fibrillation (IVF), may serve as the pathogenic basis for autopsy-negative sudden unexplained death (SUD) and sudden infant death syndrome (SIDS). Emerging evidence has linked perturbations in the transient outward current (I(to) ) conducted by the KCND3-encoded Kv4.3 pore-forming alpha-subunit to BrS or IVF. However, the contribution of KCND3 mutations to autopsy-negative SUD/SIDS is unknown. To investigate the potential association between KCND3 and SUD/SIDS, mutational analysis of KCND3 was conducted in 123 SUDS and 292 SIDS victims using polymerase chain reaction, denaturing high-performance liquid chromatography, and direct sequencing. Overall, one SIDS case (<1.0%) and two SUDS cases (1.6%) harbored potentially pathogenic mutations in KCND3. The novel p.Val392Ile, p.Ser530Pro, and p.Gly600Arg mutations involved highly conserved residues and were absent in 1,560 reference alleles. Although the SIDS-associated p.Ser530Pro mutation demonstrated a wild-type (WT) electrophysiological phenotype when heterologously expressed, the SUDS-associated p.Val392Ile and p.Gly600Arg mutations significantly increased peak current density at +40 mV in comparison with WT by 100.4% (P < 0.05) and 50.4% (P < 0.05), respectively. p.Val392Ile also slowed recovery from inactivation 3.6-fold, indicating a mixed electrophysiological phenotype. This is the first report indicating that KCND3 may serve as a rare genetic substrate in the pathogenesis of SUDS but not SIDS cases.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Potassium voltage-gated channel subfamily D member 3Q9UK17Details