Identification of the histidine ligands to the binuclear metal center of phosphotriesterase by site-directed mutagenesis.

Article Details

Citation

Kuo JM, Raushel FM

Identification of the histidine ligands to the binuclear metal center of phosphotriesterase by site-directed mutagenesis.

Biochemistry. 1994 Apr 12;33(14):4265-72.

PubMed ID
8155644 [ View in PubMed
]
Abstract

In order to identify which of the seven histidines in phosphotriesterase participate at the active site/binuclear metal center of the enzyme, site-directed mutagenesis has been employed to change, individually, each of the seven histidine residues to asparagine. In addition, the gene for the wild-type enzyme has been subcloned without its leader sequence behind a modified ribosomal binding site, leading to a 5-fold increase in protein expression. The seven mutants, H55N, H57N, H123N, H201N, H230N, H254N, and H257N, exhibit varying degrees of activity compared to the wild-type enzyme. The H123N and H257N mutants are as active as the wild-type enzyme, but all of the other mutant enzymes have 10% or less activity. The metal content of the cobalt-purified mutant enzymes has been determined to be less than that of the wild-type enzyme in all cases. Each of the mutant enzymes has been converted to apoenzyme and reconstituted with 2 equiv of zinc(II), cadmium(II), or cobalt(II). The kinetic parameters, Vmax and V/Km, and apparent pKa's have been determined for each of the reconstituted enzyme derivatives. In almost all cases, the apparent pKa's have shifted toward higher values. The pH-rate profiles for some of the reconstituted mutant enzymes are significantly different from those for the wild-type enzyme, indicating that other groups may become involved in the reaction mechanism upon mutation of the histidine residue to asparagine. His-123 is the only histidine residue that appears to have no involvement in the catalytic activity of phosphotriesterase.(ABSTRACT TRUNCATED AT 250 WORDS)

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Parathion hydrolaseP0A434Details