Gain-of-function mutation in TRPV4 identified in patients with osteonecrosis of the femoral head.

Article Details

Citation

Mah W, Sonkusare SK, Wang T, Azeddine B, Pupavac M, Carrot-Zhang J, Hong K, Majewski J, Harvey EJ, Russell L, Chalk C, Rosenblatt DS, Nelson MT, Seguin C

Gain-of-function mutation in TRPV4 identified in patients with osteonecrosis of the femoral head.

J Med Genet. 2016 Oct;53(10):705-9. doi: 10.1136/jmedgenet-2016-103829. Epub 2016 Jun 21.

PubMed ID
27330106 [ View in PubMed
]
Abstract

BACKGROUND: Osteonecrosis of the femoral head is a debilitating disease that involves impaired blood supply to the femoral head and leads to femoral head collapse. METHODS: We use whole-exome sequencing and Sanger sequencing to analyse a family with inherited osteonecrosis of the femoral head and fluorescent Ca(2+) imaging to functionally characterise the variant protein. RESULTS: We report a family with four siblings affected with inherited osteonecrosis of the femoral head and the identification of a c.2480_2483delCCCG frameshift deletion followed by a c.2486T>A substitution in one allele of the transient receptor potential vanilloid 4 (TRPV4) gene. TRPV4 encodes a Ca(2+)-permeable cation channel known to play a role in vasoregulation and osteoclast differentiation. While pathogenic TRPV4 mutations affect the skeletal or nervous systems, association with osteonecrosis of the femoral head is novel. Functional measurements of Ca(2+) influx through mutant TRPV4 channels in HEK293 cells and patient-derived dermal fibroblasts identified a TRPV4 gain of function. Analysis of channel open times, determined indirectly from measurement of TRPV4 activity within a cluster of TRPV4 channels, revealed that the TRPV4 gain of function was caused by longer channel openings. CONCLUSIONS: These findings identify a novel TRPV4 mutation implicating TRPV4 and altered calcium homeostasis in the pathogenesis of osteonecrosis while reinforcing the importance of TRPV4 in bone diseases and vascular endothelium.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Transient receptor potential cation channel subfamily V member 4Q9HBA0Details