Digoxin affects potassium homeostasis during exercise in patients with heart failure.

Article Details

Citation

Schmidt TA, Bundgaard H, Olesen HL, Secher NH, Kjeldsen K

Digoxin affects potassium homeostasis during exercise in patients with heart failure.

Cardiovasc Res. 1995 Apr;29(4):506-11.

PubMed ID
7796444 [ View in PubMed
]
Abstract

OBJECTIVE: The aim was to evaluate whether digitalisation of heart failure patients affects extrarenal potassium handling during and following exercise, and to assess digoxin receptor occupancy in human skeletal muscle in vivo. METHODS: In a paired study of before versus after digitalisation, 10 patients with congestive heart failure underwent identical exercise sessions consisting of three bouts of increasing work rates, 41-93 W, on a cycle ergometer. The final bouts were followed by exercise to exhaustion. The femoral vessels and brachial artery were catheterised. Arterial blood pressure, heart rate, leg blood flow, cardiac output, plasma potassium, haemoglobin, pH, and skeletal muscle receptor occupancy with digoxin in biopsies were determined. RESULTS: Occupancy of skeletal muscle Na/K-ATPase with digoxin was 9% (P < 0.05). Following digitalisation femoral venous plasma potassium increased by 0.2-0.3 mmol.litre-1 (P < 0.05) at work rates of 69 W, 93 W, and at exhaustion, as well as during the first 3 min of recovery. Following digitalisation the femoral venoarterial difference in plasma potassium increased by 50-100% (P < 0.05) during exercise, and decreased by 66-75% (P < 0.05) during early recovery. Total loss of potassium from the leg increased by 138%. The effects of digitalisation on plasma potassium were not the outcome of changes in haemodynamics, because cardiac output and leg blood flow increased by up to 13% and 19% (P < 0.05), nor was it the outcome of changes in haemoconcentration or pH. CONCLUSIONS: Extrarenal potassium handling is altered as a result of digoxin treatment. This is likely to reflect a reduced capacity of skeletal muscle Na/K-ATPase for active potassium uptake because of inhibition by digoxin, adding to the reduction of skeletal muscle Na/K-ATPase concentration induced by heart failure per se. In heart failure patients, improved haemodynamics induced by digoxin may, however, increase the capacity for physical conditioning. Thus the impairment of extrarenal potassium homeostasis by heart failure and digoxin treatment may be counterbalanced by training.

DrugBank Data that Cites this Article

Drugs