Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes.

Article Details

Citation

Glaeser H, Drescher S, Eichelbaum M, Fromm MF

Influence of rifampicin on the expression and function of human intestinal cytochrome P450 enzymes.

Br J Clin Pharmacol. 2005 Feb;59(2):199-206. doi: 10.1111/j.1365-2125.2004.02265.x.

PubMed ID
15676042 [ View in PubMed
]
Abstract

AIMS: To investigate the potential induction by rifampicin of intestinal CYP2C8, CYP2C9, CYP2D6 and CYP3A4 using preparations of human enterocytes. METHODS: Using a multilumen perfusion catheter shed human enterocytes were collected from 6 healthy subjects before and after 10 days of 600 mg day(-1) oral rifampicin administration. The protein expression of CYP2C8, CYP2C9, CYP2D6 and CYP3A4 as well as that of CYP3A4 mRNA was determined using Western blotting and RT-PCR, respectively. RESULTS: CYP3A4 mRNA expression in shed enterocytes increased from 74.6 +/- 44.2 to 143.2 +/- 68.4 a.u. (P < 0.05, 95% CI: 21.8-115.3). Expression of CYP2C8 and CYP2C9 increased from 5.1 +/- 0.9 to 10.4 +/- 2.3 pmol mg(-1) protein (P < 0.01, 95% CI: 2.8-7.7) and from 4.2 +/- 1.4 to 5.7 +/- 1.1 pmol mg(-1) protein (P < 0.01, 95% CI: 0.6-2.4), respectively. No significant difference in CYP2D6 expression before and during rifampicin intake was observed. Rifampicin administration also resulted in a significant induction of CYP3A4 protein (34.1 +/- 10.7 vs. 113.9 +/- 31.1 pmol mg(-1) protein (P < 0.001, 95% CI: 51.8-107.6)). Ex vivo incubation of enterocyte homogenates with verapamil resulted in a significantly increased production of the metabolites formed via CYP3A4 (D-617: 125.9 +/- 118.8 vs. 277.2 +/- 145.5 pmol min(-1) mg(-1) protein (P < 0.05, 95% CI: 30.1-272.5); norverapamil: 113.0 +/- 57.9 vs. 398.4 +/- 148.2 pmol min(-1) mg(-1) protein (P < 0.05, 95% CI: 47.2-523.6)). CONCLUSION: Our findings indicate that shed enterocytes are a useful tool to study the expression, regulation and function of drug metabolizing enzymes. Induction of intestinal CYP2C8 and CYP2C9 might contribute in part to rifampicin - mediated drug interactions, in addition to their hepatic counterparts and intestinal and hepatic CYP3A4.

DrugBank Data that Cites this Article

Drug Enzymes
DrugEnzymeKindOrganismPharmacological ActionActions
RifampicinCytochrome P450 2C8ProteinHumans
Unknown
Inhibitor
Inducer
Details