The substitution of arginine for glycine 85 of the alpha 1(I) procollagen chain results in mild osteogenesis imperfecta. The mutation provides direct evidence for three discrete domains of cooperative melting of intact type I collagen.

Article Details

Citation

Deak SB, Scholz PM, Amenta PS, Constantinou CD, Levi-Minzi SA, Gonzalez-Lavin L, Mackenzie JW

The substitution of arginine for glycine 85 of the alpha 1(I) procollagen chain results in mild osteogenesis imperfecta. The mutation provides direct evidence for three discrete domains of cooperative melting of intact type I collagen.

J Biol Chem. 1991 Nov 15;266(32):21827-32.

PubMed ID
1718984 [ View in PubMed
]
Abstract

We report a case of mild osteogenesis imperfecta in a 56-year-old male undergoing aortic valve replacement surgery. The primary defect in this patient was the substitution of arginine for glycine 85 in one of the two chains of alpha 1(I) procollagen. The thermal stability of the type I collagen synthesized by the patient's cultured skin fibroblasts was examined by enzymatic digestion. Digestion of the mutant type I collagen with trypsin and chymotrypsin at increasing temperatures sequentially generated three discrete collagenous fragments, approximately 90, 170, and 230 amino acids shorter than normal type I collagen. This incremental thermal denaturation is indicative of cooperative melting blocks within the type I collagen. This is the first demonstration of such cooperative blocks of melting in intact, essentially normal post-translationally modified type I collagen. This direct evidence for cooperative melting domains of uncut type I collagen suggests that discrete blocks of amino acids function as core sites stabilizing the collagen helix. The location of mutations of the alpha chains of type I collagen relative to these discrete blocks of amino acids may influence the severity of the disease phenotype.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Collagen alpha-1(I) chainP02452Details