Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling.

Article Details

Citation

Fiory F, Alberobello AT, Miele C, Oriente F, Esposito I, Corbo V, Ruvo M, Tizzano B, Rasmussen TE, Gammeltoft S, Formisano P, Beguinot F

Tyrosine phosphorylation of phosphoinositide-dependent kinase 1 by the insulin receptor is necessary for insulin metabolic signaling.

Mol Cell Biol. 2005 Dec;25(24):10803-14.

PubMed ID
16314505 [ View in PubMed
]
Abstract

In L6 myoblasts, insulin receptors with deletion of the C-terminal 43 amino acids (IR(Delta43)) exhibited normal autophosphorylation and IRS-1/2 tyrosine phosphorylation. The L6 cells expressing IR(Delta43) (L6(IRDelta43)) also showed no insulin effect on glucose uptake and glycogen synthase, accompanied by a >80% decrease in insulin induction of 3-phosphoinositide-dependent protein kinase 1 (PDK-1) activity and tyrosine phosphorylation and of protein kinase B (PKB) phosphorylation at Thr(308). Insulin induced the phosphatidylinositol 3 kinase-dependent coprecipitation of PDK-1 with wild-type IR (IR(WT)), but not IR(Delta43). Based on overlay blotting, PDK-1 directly bound IR(WT), but not IR(Delta43). Insulin-activated IR(WT), and not IR(Delta43), phosphorylated PDK-1 at tyrosines 9, 373, and 376. The IR C-terminal 43-amino-acid peptide (C-terminal peptide) inhibited in vitro PDK-1 tyrosine phosphorylation by the IR. Tyr-->Phe substitution prevented this inhibitory action. In the L6(hIR) cells, the C-terminal peptide coprecipitated with PDK-1 in an insulin-stimulated fashion. This peptide simultaneously impaired the insulin effect on PDK-1 coprecipitation with IR(WT), on PDK-1 tyrosine phosphorylation, on PKB phosphorylation at Thr(308), and on glucose uptake. Upon insulin exposure, PDK-1 membrane persistence was significantly reduced in L6(IRDelta43) compared to control cells. In L6 cells expressing IR(WT), the C-terminal peptide also impaired insulin-dependent PDK-1 membrane persistence. Thus, PDK-1 directly binds to the insulin receptor, followed by PDK-1 activation and insulin metabolic effects.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Insulin receptorP06213Details
3-phosphoinositide-dependent protein kinase 1O15530Details