Mucopolysaccharidosis type IIIB: characterisation and expression of wild-type and mutant recombinant alpha-N-acetylglucosaminidase and relationship with sanfilippo phenotype in an attenuated patient.
Article Details
- CitationCopy to clipboard
Yogalingam G, Weber B, Meehan J, Rogers J, Hopwood JJ
Mucopolysaccharidosis type IIIB: characterisation and expression of wild-type and mutant recombinant alpha-N-acetylglucosaminidase and relationship with sanfilippo phenotype in an attenuated patient.
Biochim Biophys Acta. 2000 Nov 15;1502(3):415-25.
- PubMed ID
- 11068184 [ View in PubMed]
- Abstract
Mucopolysaccharidosis type IIIB (MPS-IIB) is a lysosomal storage disorder characterised by the defective degradation of heparan sulfate due to a deficiency of alpha-N-acetylglucosaminidase (NAG). The clinical severity of MPS-IIIB ranges from an attenuated to severely affected Sanfilippo phenotype. This paper describes the expression and characterisation of wild-type recombinant NAG and the molecular characterisation of a previously identified R297X/F48L compound heterozygous MPS-IIIB patient with attenuated Sanfilippo syndrome. We have previously shown R297X to be the most common mutation in a cohort of Dutch and Australian patients, occurring at a frequency of approximately 12.5%. To date F48L has only been described in the proband. To determine the contribution of each mutation to the overall clinical phenotype of the patient, both mutant alleles were engineered into the wild-type NAG cDNA and expressed in Chinese hamster ovary cells. The wild-type NAG and F48L mutant alleles were also retrovirally expressed in MPS-IIIB skin fibroblasts. Residual NAG activity and the stability and maturation of immunoprecipitated NAG were determined for wild-type NAG and mutant NAG. The combined biochemical phenotypes of the two NAG mutant alleles demonstrated a good correspondence with the observed attenuated Sanfilippo phenotype of the patient.