In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.

Article Details

Citation

McCoy AJ, Sandlin RC, Maurelli AT

In vitro and in vivo functional activity of Chlamydia MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase involved in peptidoglycan synthesis and fosfomycin resistance.

J Bacteriol. 2003 Feb;185(4):1218-28.

PubMed ID
12562791 [ View in PubMed
]
Abstract

Organisms of Chlamydia spp. are obligate intracellular, gram-negative bacteria with a dimorphic developmental cycle that takes place entirely within a membrane-bound vacuole termed an inclusion. The chlamydial anomaly refers to the fact that cell wall-active antibiotics inhibit Chlamydia growth and peptidoglycan (PG) synthesis genes are present in the genome, yet there is no biochemical evidence for synthesis of PG. In this work, we undertook a genetics-based approach to reevaluate the chlamydial anomaly by characterizing MurA, a UDP-N-acetylglucosamine enolpyruvyl transferase that catalyzes the first committed step of PG synthesis. The murA gene from Chlamydia trachomatis serovar L2 was cloned and placed under the control of the arabinose-inducible, glucose-repressible ara promoter and transformed into Escherichia coli. After transduction of a lethal DeltamurA mutation into the strain, viability of the E. coli strain became dependent upon expression of the C. trachomatis murA. DNA sequence analysis of murA from C. trachomatis predicted a cysteine-to-aspartate change in a key residue within the active site of MurA. In E. coli, the same mutation has previously been shown to cause resistance to fosfomycin, a potent antibiotic that specifically targets MurA. In vitro activity of the chlamydial MurA was resistant to high levels of fosfomycin. Growth of C. trachomatis was also resistant to fosfomycin. Moreover, fosfomycin resistance was imparted to the E. coli strain expressing the chlamydial murA. Conversion of C. trachomatis elementary bodies to reticulate bodies and cell division are correlated with expression of murA mRNA. mRNA from murB, the second enzymatic reaction in the PG pathway, was also detected during C. trachomatis infection. Our findings, as well as work from other groups, suggest that a functional PG pathway exists in Chlamydia spp. We propose that chlamydial PG is essential for progression through the developmental cycle as well as for cell division. Elucidating the existence of PG in Chlamydia spp. is of significance for the development of novel antibiotics targeting the chlamydial cell wall.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
FosfomycinUDP-N-acetylglucosamine 1-carboxyvinyltransferaseProteinEscherichia coli (strain K12)
Yes
Inhibitor
Details