Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome.

Article Details

Citation

Toh S, Wada M, Uchiumi T, Inokuchi A, Makino Y, Horie Y, Adachi Y, Sakisaka S, Kuwano M

Genomic structure of the canalicular multispecific organic anion-transporter gene (MRP2/cMOAT) and mutations in the ATP-binding-cassette region in Dubin-Johnson syndrome.

Am J Hum Genet. 1999 Mar;64(3):739-46.

PubMed ID
10053008 [ View in PubMed
]
Abstract

Dubin-Johnson syndrome (DJS) is an autosomal recessive disease characterized by conjugated hyperbilirubinemia. Previous studies of the defects in the human canalicular multispecific organic anion transporter gene (MRP2/cMOAT) in patients with DJS have suggested that the gene defects are responsible for DJS. In this study, we determined the exon/intron structure of the human MRP2/cMOAT gene and further characterized mutations in patients with DJS. The human MRP2/cMOAT gene contains 32 exons, and it has a structure that is highly conserved with that of another ATP-binding-cassette gene, that for a multidrug resistance-associated protein. We then identified three mutations, including two novel ones. All mutations identified to date are in the cytoplasmic domain, which includes the two ATP-binding cassettes and the linker region, or adjacent putative transmembrane domain. Our results confirm that MRP2/cMOAT is the gene responsible for DJS. The finding that mutations are concentrated in the first ATP-binding-cassette domain strongly suggests that a disruption of this region is a critical route to loss of function.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Canalicular multispecific organic anion transporter 1Q92887Details