1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile.

Article Details

Citation

Betz M, Huxley P, Davies SJ, Mushtaq Y, Pieper M, Tschesche H, Bode W, Gomis-Ruth FX

1.8-A crystal structure of the catalytic domain of human neutrophil collagenase (matrix metalloproteinase-8) complexed with a peptidomimetic hydroxamate primed-side inhibitor with a distinct selectivity profile.

Eur J Biochem. 1997 Jul 1;247(1):356-63.

PubMed ID
9249047 [ View in PubMed
]
Abstract

Matrix metalloproteinases (MMP) are zinc endopeptidases involved in tissue remodelling. They have been implicated in a series of pathologies, including cancer, arthritis, joint destruction and Alzheimer's disease. Human neutrophil collagenase represents one of the three interstitial collagenases that cleave triple-helical collagen of type I, II and III. Its catalytic domain (residues Phe79-Gly242) has been heterologously expressed in Escherichia coli and crystallized as a non-covalent complex with the hydroxamate inhibitor BB-1909, which has distinct selectivity against different MMP, in a crystal form. The crystal structure, refined to 0.18-nm resolution, shows that BB-1909 is a right-hand-side inhibitor that binds to the S1'-S3' subsites and coordinates to the catalytic Zn2+ in a bidentate manner via the hydroxyl and carbonyl oxygen atoms of the hydroxamate group in a similar manner to batimastat. The collagenase/BB-1909 complex is described in detail and compared with the collagenase/batimastat complex. These studies provide information on MMP specificity and thus may assist the development of more-selective MMP inhibitors.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Neutrophil collagenaseP22894Details