Crystallographic study at 2.5 A resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP.

Article Details

Citation

Brunie S, Zelwer C, Risler JL

Crystallographic study at 2.5 A resolution of the interaction of methionyl-tRNA synthetase from Escherichia coli with ATP.

J Mol Biol. 1990 Nov 20;216(2):411-24.

PubMed ID
2254937 [ View in PubMed
]
Abstract

The crystal structure of the tryptic fragment of the methionyl-tRNA synthetase from Escherichia coli, complexed with ATP, has been refined to a crystallographic R-factor of 0.220, at 2.5 A resolution (for 4433 protein atoms). In the last stages of the refinement, the simulated annealing refinement method was fully applied, contributing to a drastic improvement of the model and the identification of the missing atoms. In the final model, the root-mean-square deviation from ideality for bond distances is 0.021 A and for angle distances is 0.054 A. The position of the zinc ion has been confirmed and is located near the active site. The tryptic fragment is composed of two globular domains. The first domain, from the N terminus to Thr360, contains a nucleotide-binding fold into which two long polypeptides of 101 and 70 residues are inserted. The nucleotide-binding fold is strengthened by the presence of the zinc ion in the vicinity of the active site. The second domain, up to Pro526, is mainly alpha-helical. The C-terminal polypeptide, Phe527 to Lys551, folds back towards the first domain, making a link between the two domains. The heptapeptide 528-534 partly shapes a deep cavity that plunges into the central core of the nucleotide-binding fold, where the ATP molecule is located. The adenine ring, deeply buried in the bottom of the cleft, is blocked between the first helix HA, and the strands A and D of the beta-sheet and makes no polar interaction with the enzyme. The 2' and 3' hydroxyl groups of the ribose, whose conformation is C2' endo, interact with the main-chain carbonyl oxygen atoms of Ile231 and Glu241, respectively. The side-chain nitrogen atom of Lys142 is at hydrogen-bonding distance from the ring oxygen O-4' of the ribose. One of the alpha-phosphate oxygen atoms and one of the gamma-phosphate oxygen atoms interact with the imidazole ring of His21, which is well conserved in many of the known synthetases; this indicates a possible crucial role for this residue in binding ATP. The beta-phosphate group is linked to the main-chain carbonyl oxygen atom of Tyr15 through an intermediate water molecule. The gamma-phosphate group interacts with the carbonyl oxygen atom and the side-chain of Asn17.(ABSTRACT TRUNCATED AT 400 WORDS)

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Methionine--tRNA ligaseP00959Details