Crystallization and structure solution at 4 A resolution of the recombinant synthase domain of N-(5'-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from Escherichia coli complexed to a substrate analogue.

Article Details

Citation

Wilmanns M, Schlagenhauf E, Fol B, Jansonius JN

Crystallization and structure solution at 4 A resolution of the recombinant synthase domain of N-(5'-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from Escherichia coli complexed to a substrate analogue.

Protein Eng. 1990 Jan;3(3):173-80.

PubMed ID
2184433 [ View in PubMed
]
Abstract

The recombinant synthase domain of the bifunctional enzyme N-(5'-phosphoribosyl)anthranilate isomerase:indole-3-glycerol-phosphate synthase from Escherichia coli has been crystallized, and the structure has been solved at 4 A resolution. Two closely related crystal forms grown from ammonium sulphate diffract to 2 A resolution. One form (space group R32, a = 163 A, alpha = 29.5 degrees) contains the unliganded synthase domain; the second crystal form (space group P6(3)22, a = 144 A, c = 158 A) is co-crystallized with the substrate analogue N-(5'-phosphoribit-1-yl)anthranilate. The structure of the synthase-inhibitor complex has been solved by the molecular replacement method. This achievement represents the first successful use of a (beta alpha)8-barrel monomer as a trial model. The recombinant synthase domain associates as a trimer in the crystal, the molecules being related by a pseudo-crystallographic triad. The interface contacts between the three domains are mediated by those residues that are also involved in the domain interface of the bifunctional enzyme. This system provides a model for an interface which is used in both intermolecular and intramolecular domain contacts.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Tryptophan biosynthesis protein TrpCFP00909Details