TAK-475
Explore a selection of our essential drug information below, or:
Identification
- Generic Name
- TAK-475
- DrugBank Accession Number
- DB05317
- Background
TAK-475 is a "squalene synthase inhibitor", a type of cholesterol-lowering drug that has not yet been brought to market.
- Type
- Small Molecule
- Groups
- Investigational
- Synonyms
- Not Available
Pharmacology
- Indication
Investigated for use/treatment in hyperlipidemia.
Reduce drug development failure ratesBuild, train, & validate machine-learning modelswith evidence-based and structured datasets.Build, train, & validate predictive machine-learning models with structured datasets.- Contraindications & Blackbox Warnings
- Prevent Adverse Drug Events TodayTap into our Clinical API for life-saving information on contraindications & blackbox warnings, population restrictions, harmful risks, & more.Avoid life-threatening adverse drug events with our Clinical API
- Pharmacodynamics
Not Available
- Mechanism of action
Squalene synthase inhibitors are believed to have potential advantages over statins, which inhibit 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. HMG-CoA catalyzes the conversion of HMG-CoA to mevalonate and thus serves as the primary rate-limiting enzyme in the hepatic biosynthesis of cholesterol. Squalene synthase acts downstream of mevalonate, catalyzing the dimerization of farnesyl-pyrophosphate to squalene. This is the first step in the cholesterol biosynthetic pathway that is solely committed to the production of cholesterol, and researchers believe that blockade at this site may avoid the effects associated with decreased formation of isoprenolated intermediates and metabolites in the pathway beyond HMG-CoA reductase.
Target Actions Organism USqualene synthase Not Available Humans U3-hydroxy-3-methylglutaryl-coenzyme A reductase Not Available Humans - Absorption
Not Available
- Volume of distribution
Not Available
- Protein binding
Not Available
- Metabolism
- Not Available
- Route of elimination
Not Available
- Half-life
Not Available
- Clearance
Not Available
- Adverse Effects
- Improve decision support & research outcomesWith structured adverse effects data, including: blackbox warnings, adverse reactions, warning & precautions, & incidence rates. View sample adverse effects data in our new Data Library!Improve decision support & research outcomes with our structured adverse effects data.
- Toxicity
Not Available
- Pathways
- Not Available
- Pharmacogenomic Effects/ADRs
- Not Available
Interactions
- Drug Interactions
- This information should not be interpreted without the help of a healthcare provider. If you believe you are experiencing an interaction, contact a healthcare provider immediately. The absence of an interaction does not necessarily mean no interactions exist.Not Available
- Food Interactions
- Not Available
Categories
- Drug Categories
- Classification
- Not classified
- Affected organisms
- Not Available
Chemical Identifiers
- UNII
- IUH3AY74O3
- CAS number
- Not Available
- InChI Key
- Not Available
- InChI
- Not Available
- IUPAC Name
- Not Available
- SMILES
- Not Available
References
- General References
- Amano Y, Nishimoto T, Tozawa Ri, Ishikawa E, Imura Y, Sugiyama Y: Lipid-lowering effects of TAK-475, a squalene synthase inhibitor, in animal models of familial hypercholesterolemia. Eur J Pharmacol. 2003 Apr 11;466(1-2):155-61. [Article]
- Nishimoto T, Amano Y, Tozawa R, Ishikawa E, Imura Y, Yukimasa H, Sugiyama Y: Lipid-lowering properties of TAK-475, a squalene synthase inhibitor, in vivo and in vitro. Br J Pharmacol. 2003 Jul;139(5):911-8. [Article]
- External Links
- PubChem Substance
- 347910077
Clinical Trials
- Clinical Trials
Clinical Trial & Rare Diseases Add-on Data Package
Explore 4,000+ rare diseases, orphan drugs & condition pairs, clinical trial why stopped data, & more. Preview package Phase Status Purpose Conditions Count Start Date Why Stopped 100+ additional columns Unlock 175K+ rows when you subscribe.View sample data3 Completed Treatment Dyslipidemia 2 somestatus stop reason just information to hide 3 Completed Treatment High Cholesterol 6 somestatus stop reason just information to hide 3 Completed Treatment Type 2 Diabetes Mellitus 1 somestatus stop reason just information to hide 3 Terminated Treatment High Cholesterol 4 somestatus stop reason just information to hide 2 Completed Treatment High Cholesterol 1 somestatus stop reason just information to hide
Pharmacoeconomics
- Manufacturers
- Not Available
- Packagers
- Not Available
- Dosage Forms
- Not Available
- Prices
- Not Available
- Patents
- Not Available
Properties
- State
- Solid
- Experimental Properties
- Not Available
- Predicted Properties
- Not Available
- Predicted ADMET Features
- Not Available
Spectra
- Mass Spec (NIST)
- Not Available
- Spectra
- Not Available
- Chromatographic Properties
Collision Cross Sections (CCS)
Not Available
Targets
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the condensation of 2 farnesyl pyrophosphate (FPP) moieties to form squalene. Proceeds in two distinct steps. In the first half-reaction, two molecules of FPP react to form the stable presqualene diphosphate intermediate (PSQPP), with concomitant release of a proton and a molecule of inorganic diphosphate. In the second half-reaction, PSQPP undergoes heterolysis, isomerization, and reduction with NADPH or NADH to form squalene. It is the first committed enzyme of the sterol biosynthesis pathway
- Specific Function
- farnesyl-diphosphate farnesyltransferase activity
- Gene Name
- FDFT1
- Uniprot ID
- P37268
- Uniprot Name
- Squalene synthase
- Molecular Weight
- 48114.87 Da
- Kind
- Protein
- Organism
- Humans
- Pharmacological action
- Unknown
- General Function
- Catalyzes the conversion of (3S)-hydroxy-3-methylglutaryl-CoA (HMG-CoA) to mevalonic acid, the rate-limiting step in the synthesis of cholesterol and other isoprenoids, thus plays a critical role in cellular cholesterol homeostasis (PubMed:21357570, PubMed:2991281, PubMed:36745799, PubMed:6995544). HMGCR is the main target of statins, a class of cholesterol-lowering drugs (PubMed:11349148, PubMed:18540668, PubMed:36745799)
- Specific Function
- coenzyme A binding
- Gene Name
- HMGCR
- Uniprot ID
- P04035
- Uniprot Name
- 3-hydroxy-3-methylglutaryl-coenzyme A reductase
- Molecular Weight
- 97475.155 Da
Drug created at November 18, 2007 18:23 / Updated at June 12, 2020 16:52