Kinetic, Raman, NMR, and site-directed mutagenesis studies of the Pseudomonas sp. strain CBS3 4-hydroxybenzoyl-CoA thioesterase active site.

Article Details

Citation

Zhuang Z, Song F, Zhang W, Taylor K, Archambault A, Dunaway-Mariano D, Dong J, Carey PR

Kinetic, Raman, NMR, and site-directed mutagenesis studies of the Pseudomonas sp. strain CBS3 4-hydroxybenzoyl-CoA thioesterase active site.

Biochemistry. 2002 Sep 17;41(37):11152-60.

PubMed ID
12220180 [ View in PubMed
]
Abstract

4-Hydroxybenzoyl-coenzyme A (4-HBA-CoA) thioesterase catalyzes the hydrolysis of 4-HBA-CoA to 4-hydroxybenzoate and CoA. X-ray crystallographic analysis of the liganded enzyme has shown that the benzoyl thioester and pantetheine moieties of the substrate ligand are bound in a narrow crevice while the nucleotide moiety rests on the protein surface (Thoden, J. B., Holden, H. M., Zhuang, Z. and Dunaway-Mariano, D. (2002) X-ray Crystallographic Analyses of Inhibitor and Substrate Complexes of Wild-type and Mutant 4-Hydroxybenzoyl-CoA Thioesterase, J. Biol. Chem., in press). Asp17 is positioned in the crevice, close to the substrate thioester C=O, which in turn interacts with the positive pole of an alpha-helix macrodipole. In this paper we report the results from spectral, mutagenesis, and kinetic studies which show (1) that substrate activation involves restricted thioester C=O conformational freedom and a modest enhancement of C=O bond polarization, (2) that the nucleotide unit of the substrate is bound through interaction with the protein surface, and (3) that Asp17 contributes a rate factor of 10(4), consistent with its proposed role of general base or nucleophile.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
4-hydroxybenzoyl-CoA thioesteraseP56653Details