Effects of decahydroisoquinoline-3-carboxylic acid monohydrate, a novel AMPA receptor antagonist, on glutamate-induced CA2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons.

Article Details

Citation

Liljequist S, Cebers G, Kalda A

Effects of decahydroisoquinoline-3-carboxylic acid monohydrate, a novel AMPA receptor antagonist, on glutamate-induced CA2+ responses and neurotoxicity in rat cortical and cerebellar granule neurons.

Biochem Pharmacol. 1995 Nov 27;50(11):1761-74.

PubMed ID
8615854 [ View in PubMed
]
Abstract

In this study, we examined the effects of a novel water-soluble, putative AMPA receptor antagonist, (-)(3S,4aR,6R,8aR)-6-[2-(1(2)H-tetrazole-5-yl)ethyl]-1,2,3, 4,4a,5,6,7,8,8a-decahydroisoquinoline-3-carboxylic acid monohydrate (LY326325), on glutamate-, N-methyl-D-aspartic acid (NMDA), alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-, and kainic acid (KA)-induced elevations of intracellular Ca2+ concentrations ([Ca2+]i) and 45Ca2+ uptake, as well as glutamate agonist-induced neurotoxicity in primary cultures of intact rat cortical and cerebellar granule neurons. In some experiments, the actions of LY326325 were tested in the presence of cyclothiazide, a compound that is known to block glutamate-induced desensitization of AMPA-preferring subtypes of glutamate receptors, thereby largely potentiating the functional effects of AMPA. LY326325 fully blocked the elevations of [Ca2+]i induced by NMDA and non-NMDA glutamate receptor agonists in both cortical and cerebellar granule neurons. The application of increasing concentrations of cyclothiazide was not able to reverse the LY326325-induced blockade of glutamate receptors in cortical neurons. In contrast, the same cyclothiazide treatment fully reversed the blockade produced by the noncompetitive AMPA/KA receptor antagonist 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2, 3-benzodiazepine HCl (GYKI 52466). In 45Ca2+ uptake studies. LY325325 inhibited the NMDA-, AMPA-, and KA-induced enhancement of 45Ca2+ uptake in a concentration-dependent fashion in both cortical and cerebellar granule cells. In analogy to the results obtained with [Ca2+]i recordings, cyclothiazide failed to counteract the LY326325-induced blockade of KA-stimulated 45Ca2+ uptake in cerebellar granule neurons, whereas the blockade induced by the noncompetitive AMPA/KA receptor blocking agent GYKI 52466 was fully reversed by cyclothiazide. Because a similar, although not identical pattern of actions was seen following the application of the competitive AMPA/KA receptor antagonist 6-nitro-7-sulphamoyl-benzo(f)quinoxaline-2-3-dione (NBQX), it is suggested that the inhibitory actions of LY326325 are similar to those produced by NBQX but clearly differ from those caused by the noncompetitive AMPA/KA receptor antagonist GYKI 52466. Finally, when the neuroprotective actions of LY326325 on glutamate agonist-induced neurotoxicity were examined in cerebellar granule neurons, we found that LY326325 almost completely blocked the neurotoxic actions of NMDA, AMPA, and KA, respectively, whereas it produced only a partial blockade of glutamate-induced neurotoxicity. Taken together, our current results suggest that although LY326325 blocked both nonNMDA and NMDA-induced Ca2+ responses, it still displayed a preferential affinity of nonNMDA receptors as compared to NMDA receptors. However, LY326325 appears to be a less selective AMPA/KA receptor antagonist than NBQX and GYKI52466, respectively.

DrugBank Data that Cites this Article

Drug Targets
DrugTargetKindOrganismPharmacological ActionActions
CyclothiazideCarbonic anhydrase 2ProteinHumans
Unknown
Inhibitor
Details