Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs.

Article Details

Citation

Gauthier-Campbell C, Bredt DS, Murphy TH, El-Husseini Ael-D

Regulation of dendritic branching and filopodia formation in hippocampal neurons by specific acylated protein motifs.

Mol Biol Cell. 2004 May;15(5):2205-17. Epub 2004 Feb 20.

PubMed ID
14978216 [ View in PubMed
]
Abstract

Although neuronal axons and dendrites with their associated filopodia and spines exhibit a profound cell polarity, the mechanism by which they develop is largely unknown. Here, we demonstrate that specific palmitoylated protein motifs, characterized by two adjacent cysteines and nearby basic residues, are sufficient to induce filopodial extensions in heterologous cells and to increase the number of filopodia and the branching of dendrites and axons in neurons. Such motifs are present at the N-terminus of GAP-43 and the C-terminus of paralemmin, two neuronal proteins implicated in cytoskeletal organization and filopodial outgrowth. Filopodia induction is blocked by mutations of the palmitoylated sites or by treatment with 2-bromopalmitate, an agent that inhibits protein palmitoylation. Moreover, overexpression of a constitutively active form of ARF6, a GTPase that regulates membrane cycling and dendritic branching reversed the effects of the acylated protein motifs. Filopodia induction by the specific palmitoylated motifs was also reduced upon overexpression of a dominant negative form of the GTPase cdc42. These results demonstrate that select dually lipidated protein motifs trigger changes in the development and growth of neuronal processes.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
ADP-ribosylation factor 6P62330Details
Ras-related protein Rab-5AP20339Details
Cell division control protein 42 homologP60953Details