Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells.

Article Details

Citation

Wang L, Payton R, Dai W, Lu L

Hyperosmotic stress-induced ATF-2 activation through Polo-like kinase 3 in human corneal epithelial cells.

J Biol Chem. 2011 Jan 21;286(3):1951-8. doi: 10.1074/jbc.M110.166009. Epub 2010 Nov 22.

PubMed ID
21098032 [ View in PubMed
]
Abstract

Elevated extracellular solute concentration (hyperosmotic stress) perturbs cell function and stimulates cell responses by evoking MAPK cascades and activating AP-1 transcription complex resulting in alterations of gene expression, cell cycle arrest, and apoptosis. The results presented here demonstrate that hyperosmotic stress elicited increases in ATF-2 phosphorylation through a novel Polo-like kinase 3 (Plk3) pathway in human corneal epithelial (HCE) cells. We found in hyperosmotic stress-induced HCE cells that Plk3 transferred to the nuclear compartment and was colocalized with ATF-2 in nuclei. Kinase activity of Plk3 was significantly activated by hyperosmotic stimulation. Further downstream, active Plk3 phosphorylated ATF-2 at the Thr-71 site in vivo and in vitro. Overexpression of Plk3 and its mutants enhanced hyperosmotic stress-induced ATF-2 phosphorylation. In contrast, suppression of Plk3 by knocking down Plk3 mRNA effectively diminished the effect of hyperosmotic stress-induced ATF-2 phosphorylation. The effect of hyperosmotic stress-induced activation of Plk3 on ATF-2 transcription factor function was also examined in CRE reporter-overexpressed HCE cells. Our results for the first time reveal that hyperosmotic stress can activate the Plk3 signaling pathway that subsequently regulates the AP-1 complex by directly phosphorylating ATF-2 independent from the effects of JNK and p38 activation.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Cyclic AMP-dependent transcription factor ATF-2P15336Details
Serine/threonine-protein kinase PLK3Q9H4B4Details