Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion.

Article Details

Citation

Allard JD, Bertrand KP

Membrane topology of the pBR322 tetracycline resistance protein. TetA-PhoA gene fusions and implications for the mechanism of TetA membrane insertion.

J Biol Chem. 1992 Sep 5;267(25):17809-19.

PubMed ID
1517220 [ View in PubMed
]
Abstract

The tetracycline resistance gene of pBR322 encodes a 41-kDa inner membrane protein (TetA) that acts as a tetracycline/H+ antiporter. Based on hydrophobicity profiles, we identified 12 potential transmembrane segments in TetA. We used oligonucleotide deletion mutagenesis to fuse alkaline phosphatase (PhoA) to the C-terminal edge of each of the predicted periplasmic and cytoplasmic segments of TetA. In general, the PhoA activities of the TetA-PhoA fusions support a TetA topology model consisting of 12 transmembrane segments with the N and C termini in the cytoplasm. However, several TetA-PhoA fusions have unexpected properties. One PhoA fusion to a predicted cytoplasmic segment (C6) has high activity. However, previous protease accessibility studies on the related Tn10 TetA protein indicated that C6 is cytoplasmically localized as predicted (Eckert, B., and Beck, C. F. (1989) J. Biol. Chem. 264, 11663-11670). PhoA fusions to three predicted periplasmic segments (P1, P2, and P5) have low to intermediate activity. In each case, the preceding transmembrane segment (TM1, TM3, and TM9) contains an aspartate (Asp17, Asp86, and Asp287). We show that these aspartates act like signal sequence mutations for PhoA export: (i) Asp----Ala mutations increase the PhoA activity of fusions to P1, P2, and P5. (ii) The signal sequence mutation suppressor prlA402 increases the PhoA activity of these same fusions. We also show that the aspartates in TM1, TM3, and TM9 are critical for wild-type TetA function; they are conserved in related TetA proteins and Asp----Ala mutations reduce or eliminate tetracycline resistance. The properties of the anomalous TetA-PhoA fusions suggest that TetA sequences C-terminal to some cytoplasmic and periplasmic segments are required for the proper localization of those segments, i.e. long range interactions may be more important in determining the membrane topology of TetA than suggested in some general models.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Tetracycline resistance protein, class CP02981Details