Skin Metabolism: Relevance of Skin Enzymes for Rational Drug Design.

Article Details

Citation

Pyo SM, Maibach HI

Skin Metabolism: Relevance of Skin Enzymes for Rational Drug Design.

Skin Pharmacol Physiol. 2019;32(5):283-294. doi: 10.1159/000501732. Epub 2019 Jul 29.

PubMed ID
31357203 [ View in PubMed
]
Abstract

Transdermal therapeutic systems (TTS) have numerous pharmacological benefits. Drug release, for example, is independent of whether a patient is in a fed or a fasted state, and lower doses can be given as gastrointestinal and hepatic first-pass metabolism is avoided. In addition, inter- and intrapatient variability is minimized as the release of the drug is mainly controlled by the system. This makes TTS interesting as alternative systems to the most common dosage form of oral tablets. The difficulty with the dermal administration route is transporting the drug through the skin, since the skin is an efficient barrier against foreign bodies. Various strategies have been reported in the literature of how drug penetration can be improved. Most of them, however, focus on overcoming the stratum corneum as the first (mechanical) skin barrier. However, penetration is much more complex, and the skin's barrier function does not only depend on the stratum corneum; what has been underestimated is the second (biological) skin barrier formed of enzymes. Compared to the stratum corneum, very little is known about these enzymes, e.g., which enzymes are present in the skin and where exactly they are localized. Hence, very few strategies can be found for how to bypass or even use the skin enzyme barrier for TTS development. This review article provides an overview of the skin enzymes considered to be relevant for the biotransformation of dermally applied drugs. Also, we discuss the use of dermal prodrugs and soft drugs and give the stereoselectivity of skin metabolism careful consideration. Finally, we provide suggestions on how to make use of the current knowledge about skin enzymes for rational TTS design.

DrugBank Data that Cites this Article

Drugs
Drug Reactions
Reaction
Details
Details