Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus.

Article Details

Citation

Ruiz-Arguello MB, Goni FM, Pereira FB, Nieva JL

Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus.

J Virol. 1998 Mar;72(3):1775-81. doi: 10.1128/JVI.72.3.1775-1781.1998.

PubMed ID
9499027 [ View in PubMed
]
Abstract

The membrane-interacting abilities of three sequences representing the putative fusogenic subdomain of the Ebola virus transmembrane protein have been investigated. In the presence of calcium, the sequence EBO(GE) (GAAIGLAWIPYFGPAAE) efficiently fused unilamellar vesicles composed of phosphatidylcholine, phosphatidylethanolamine, cholesterol, and phosphatidylinositol (molar ratio, 2:1:1:0.5), a mixture that roughly resembles the lipid composition of the hepatocyte plasma membrane. Analysis of the lipid dependence of the process demonstrated that the fusion activity of EBO(GE) was promoted by phosphatidylinositol but not by other acidic phospholipids. In comparison, EBO(EA) (EGAAIGLAWIPYFGPAA) and EBO(EE) (EGAAIGLAWIPYFGPAAE) sequences, which are similar to EBO(GE) except that they bear the negatively charged glutamate residue at the N terminus and at both the N and C termini, respectively, induced fusion to a lesser extent. As revealed by binding experiments, the glutamate residue at the N terminus severely impaired peptide-vesicle interaction. In addition, the fusion-competent EBO(GE) sequence did not associate significantly with vesicles lacking phosphatidylinositol. Tryptophan fluorescence quenching by vesicles containing brominated phospholipids indicated that the EBO(GE) peptide penetrated to the acyl chain level only when the membranes contained phosphatidylinositol. We conclude that binding and further penetration of the Ebola virus putative fusion peptide into membranes might be governed by the nature of the N-terminal residue and by the presence of phosphatidylinositol in the target membrane. Moreover, since insertion of such a peptide leads to membrane destabilization and fusion, the present data would be compatible with the involvement of this sequence in Ebola virus fusion.

DrugBank Data that Cites this Article

Polypeptides
NameUniProt ID
Envelope glycoproteinQ05320Details