Envelope glycoprotein

Details

Name
Envelope glycoprotein
Synonyms
  • GP
  • GP1,2
Gene Name
GP
Organism
Zaire ebolavirus (strain Mayinga-76)
Amino acid sequence
>lcl|BSEQ0052517|Envelope glycoprotein
MGVTGILQLPRDRFKRTSFFLWVIILFQRTFSIPLGVIHNSTLQVSDVDKLVCRDKLSST
NQLRSVGLNLEGNGVATDVPSATKRWGFRSGVPPKVVNYEAGEWAENCYNLEIKKPDGSE
CLPAAPDGIRGFPRCRYVHKVSGTGPCAGDFAFHKEGAFFLYDRLASTVIYRGTTFAEGV
VAFLILPQAKKDFFSSHPLREPVNATEDPSSGYYSTTIRYQATGFGTNETEYLFEVDNLT
YVQLESRFTPQFLLQLNETIYTSGKRSNTTGKLIWKVNPEIDTTIGEWAFWETKKNLTRK
IRSEELSFTVVSNGAKNISGQSPARTSSDPGTNTTTEDHKIMASENSSAMVQVHSQGREA
AVSHLTTLATISTSPQSLTTKPGPDNSTHNTPVYKLDISEATQVEQHHRRTDNDSTASDT
PSATTAAGPPKAENTNTSKSTDFLDPATTTSPQNHSETAGNNNTHHQDTGEESASSGKLG
LITNTIAGVAGLITGGRRTRREAIVNAQPKCNPNLHYWTTQDEGAAIGLAWIPYFGPAAE
GIYIEGLMHNQDGLICGLRQLANETTQALQLFLRATTELRTFSILNRKAIDFLLQRWGGT
CHILGPDCCIEPHDWTKNITDKIDQIIHDFVDKTLPDQGDNDNWWTGWRQWIPAGIGVTG
VIIAVIALFCICKFVF
Number of residues
676
Molecular Weight
74463.855
Theoretical pI
Not Available
GO Classification
Functions
identical protein binding
Processes
clathrin-dependent endocytosis of virus by host cell / entry receptor-mediated virion attachment to host cell / fusion of virus membrane with host endosome membrane / suppression by virus of host tetherin activity / suppression by virus of host type I interferon-mediated signaling pathway / viral budding from plasma membrane / viral entry into host cell
Components
extracellular region / host cell cytoplasm / host cell endoplasmic reticulum / host cell plasma membrane / integral component of membrane / membrane raft / viral envelope / virion membrane
General Function
Envelope glycoprotein Trimeric GP1,2 complexes form the virion surface spikes and mediate the viral entry processes, with GP1 acting as the receptor-binding subunit and GP2 as the membrane fusion subunit. At later times of infection, downregulates the expression of various host cell surface molecules that are essential for immune surveillance and cell adhesion. Down-modulates several integrins including ITGA1, ITGA2, ITGA3, ITGA4, ITGA5, ITGA6, ITGAV and ITGB1. This decrease in cell adhesion molecules may lead to cell detachment, contributing to the disruption of blood vessel integrity and hemorrhages developed during infection (cytotoxicity). Interacts with host TLR4 and thereby stimulates the differentiation and activation of monocytes leading to bystander death of T-lymphocytes (PubMed:28542576). Downregulates as well the function of host natural killer cells (PubMed:30013549). Counteracts the antiviral effect of host BST2/tetherin that restricts release of progeny virions from infected cells. However, cooperates with VP40 and host BST2 to activate canonical NF-kappa-B pathway in a manner dependent on neddylation.
Specific Function
Identical protein binding
Pfam Domain Function
Transmembrane Regions
651-671
Cellular Location
Virion membrane
Gene sequence
>lcl|BSEQ0052518|Envelope glycoprotein (GP)
ATGGGCGTTACAGGAATATTGCAGTTACCTCGTGATCGATTCAAGAGGACATCATTCTTT
CTTTGGGTAATTATCCTTTTCCAAAGAACATTTTCCATCCCACTTGGAGTCATCCACAAT
AGCACATTACAGGTTAGTGATGTCGACAAACTAGTTTGTCGTGACAAACTGTCATCCACA
AATCAATTGAGATCAGTTGGACTGAATCTCGAAGGGAATGGAGTGGCAACTGACGTGCCA
TCTGCAACTAAAAGATGGGGCTTCAGGTCCGGTGTCCCACCAAAGGTGGTCAATTATGAA
GCTGGTGAATGGGCTGAAAACTGCTACAATCTTGAAATCAAAAAACCTGACGGGAGTGAG
TGTCTACCAGCAGCGCCAGACGGGATTCGGGGCTTCCCCCGGTGCCGGTATGTGCACAAA
GTATCAGGAACGGGACCGTGTGCCGGAGACTTTGCCTTCCATAAAGAGGGTGCTTTCTTC
CTGTATGATCGACTTGCTTCCACAGTTATCTACCGAGGAACGACTTTCGCTGAAGGTGTC
GTTGCATTTCTGATACTGCCCCAAGCTAAGAAGGACTTCTTCAGCTCACACCCCTTGAGA
GAGCCGGTCAATGCAACGGAGGACCCGTCTAGTGGCTACTATTCTACCACAATTAGATAT
CAGGCTACCGGTTTTGGAACCAATGAGACAGAGTACTTGTTCGAGGTTGACAATTTGACC
TACGTCCAACTTGAATCAAGATTCACACCACAGTTTCTGCTCCAGCTGAATGAGACAATA
TATACAAGTGGGAAAAGGAGCAATACCACGGGAAAACTAATTTGGAAGGTCAACCCCGAA
ATTGATACAACAATCGGGGAGTGGGCCTTCTGGGAAACTAAAAAAAACCTCACTAGAAAA
ATTCGCAGTGAAGAGTTGTCTTTCACAGTTGTATCAAACGGAGCCAAAAACATCAGTGGT
CAGAGTCCGGCGCGAACTTCTTCCGACCCAGGGACCAACACAACAACTGAAGACCACAAA
ATCATGGCTTCAGAAAATTCCTCTGCAATGGTTCAAGTGCACAGTCAAGGAAGGGAAGCT
GCAGTGTCGCATCTAACAACCCTTGCCACAATCTCCACGAGTCCCCAATCCCTCACAACC
AAACCAGGTCCGGACAACAGCACCCATAATACACCCGTGTATAAACTTGACATCTCTGAG
GCAACTCAAGTTGAACAACATCACCGCAGAACAGACAACGACAGCACAGCCTCCGACACT
CCCTCTGCCACGACCGCAGCCGGACCCCCAAAAGCAGAGAACACCAACACGAGCAAGAGC
ACTGACTTCCTGGACCCCGCCACCACAACAAGTCCCCAAAACCACAGCGAGACCGCTGGC
AACAACAACACTCATCACCAAGATACCGGAGAAGAGAGTGCCAGCAGCGGGAAGCTAGGC
TTAATTACCAATACTATTGCTGGAGTCGCAGGACTGATCACAGGCGGGAGAAGAACTCGA
AGAGAAGCAATTGTCAATGCTCAACCCAAATGCAACCCTAATTTACATTACTGGACTACT
CAGGATGAAGGTGCTGCAATCGGACTGGCCTGGATACCATATTTCGGGCCAGCAGCCGAG
GGAATTTACATAGAGGGGCTAATGCACAATCAAGATGGTTTAATCTGTGGGTTGAGACAG
CTGGCCAACGAGACGACTCAAGCTCTTCAACTGTTCCTGAGAGCCACAACTGAGCTACGC
ACCTTTTCAATCCTCAACCGTAAGGCAATTGATTTCTTGCTGCAGCGATGGGGCGGCACA
TGCCACATTCTGGGACCGGACTGCTGTATCGAACCACATGATTGGACCAAGAACATAACA
GACAAAATTGATCAGATTATTCATGATTTTGTTGATAAAACCCTTCCGGACCAGGGGGAC
AATGACAATTGGTGGACAGGATGGAGACAATGGATACCGGCAGGTATTGGAGTTACAGGC
GTTATAATTGCAGTTATCGCTTTATTCTGTATATGCAAATTTGTCTTTTAG
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDQ05320
UniProtKB Entry NameVGP_EBOZM
General References
  1. Sanchez A, Kiley MP, Holloway BP, Auperin DD: Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res. 1993 Sep;29(3):215-40. doi: 10.1016/0168-1702(93)90063-s. [Article]
  2. Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk HD: GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology. 1995 Dec 20;214(2):421-30. doi: 10.1006/viro.1995.0052. [Article]
  3. Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST: The virion glycoproteins of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3602-7. doi: 10.1073/pnas.93.8.3602. [Article]
  4. Volchkov VE, Chepurnov AA, Volchkova VA, Ternovoj VA, Klenk HD: Molecular characterization of guinea pig-adapted variants of Ebola virus. Virology. 2000 Nov 10;277(1):147-55. doi: 10.1006/viro.2000.0572. [Article]
  5. Volchkov VE, Blinov VM, Netesov SV: The envelope glycoprotein of Ebola virus contains an immunosuppressive-like domain similar to oncogenic retroviruses. FEBS Lett. 1992 Jul 6;305(3):181-4. doi: 10.1016/0014-5793(92)80662-z. [Article]
  6. Volchkov VE, Feldmann H, Volchkova VA, Klenk HD: Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci U S A. 1998 May 12;95(10):5762-7. doi: 10.1073/pnas.95.10.5762. [Article]
  7. Volchkov VE, Volchkova VA, Slenczka W, Klenk HD, Feldmann H: Release of viral glycoproteins during Ebola virus infection. Virology. 1998 May 25;245(1):110-9. doi: 10.1006/viro.1998.9143. [Article]
  8. Ruiz-Arguello MB, Goni FM, Pereira FB, Nieva JL: Phosphatidylinositol-dependent membrane fusion induced by a putative fusogenic sequence of Ebola virus. J Virol. 1998 Mar;72(3):1775-81. doi: 10.1128/JVI.72.3.1775-1781.1998. [Article]
  9. Ito H, Watanabe S, Sanchez A, Whitt MA, Kawaoka Y: Mutational analysis of the putative fusion domain of Ebola virus glycoprotein. J Virol. 1999 Oct;73(10):8907-12. doi: 10.1128/JVI.73.10.8907-8912.1999. [Article]
  10. Wool-Lewis RJ, Bates P: Endoproteolytic processing of the ebola virus envelope glycoprotein: cleavage is not required for function. J Virol. 1999 Feb;73(2):1419-26. doi: 10.1128/JVI.73.2.1419-1426.1999. [Article]
  11. Yang ZY, Duckers HJ, Sullivan NJ, Sanchez A, Nabel EG, Nabel GJ: Identification of the Ebola virus glycoprotein as the main viral determinant of vascular cell cytotoxicity and injury. Nat Med. 2000 Aug;6(8):886-9. doi: 10.1038/78645. [Article]
  12. Takada A, Watanabe S, Ito H, Okazaki K, Kida H, Kawaoka Y: Downregulation of beta1 integrins by Ebola virus glycoprotein: implication for virus entry. Virology. 2000 Dec 5;278(1):20-6. doi: 10.1006/viro.2000.0601. [Article]
  13. Ito H, Watanabe S, Takada A, Kawaoka Y: Ebola virus glycoprotein: proteolytic processing, acylation, cell tropism, and detection of neutralizing antibodies. J Virol. 2001 Feb;75(3):1576-80. doi: 10.1128/JVI.75.3.1576-1580.2001. [Article]
  14. Watanabe S, Takada A, Watanabe T, Ito H, Kida H, Kawaoka Y: Functional importance of the coiled-coil of the Ebola virus glycoprotein. J Virol. 2000 Nov;74(21):10194-201. doi: 10.1128/jvi.74.21.10194-10201.2000. [Article]
  15. Chan SY, Empig CJ, Welte FJ, Speck RF, Schmaljohn A, Kreisberg JF, Goldsmith MA: Folate receptor-alpha is a cofactor for cellular entry by Marburg and Ebola viruses. Cell. 2001 Jul 13;106(1):117-26. doi: 10.1016/s0092-8674(01)00418-4. [Article]
  16. Jeffers SA, Sanders DA, Sanchez A: Covalent modifications of the ebola virus glycoprotein. J Virol. 2002 Dec;76(24):12463-72. doi: 10.1128/jvi.76.24.12463-12472.2002. [Article]
  17. Simmons G, Wool-Lewis RJ, Baribaud F, Netter RC, Bates P: Ebola virus glycoproteins induce global surface protein down-modulation and loss of cell adherence. J Virol. 2002 Mar;76(5):2518-28. doi: 10.1128/jvi.76.5.2518-2528.2002. [Article]
  18. Bavari S, Bosio CM, Wiegand E, Ruthel G, Will AB, Geisbert TW, Hevey M, Schmaljohn C, Schmaljohn A, Aman MJ: Lipid raft microdomains: a gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med. 2002 Mar 4;195(5):593-602. doi: 10.1084/jem.20011500. [Article]
  19. Alvarez CP, Lasala F, Carrillo J, Muniz O, Corbi AL, Delgado R: C-type lectins DC-SIGN and L-SIGN mediate cellular entry by Ebola virus in cis and in trans. J Virol. 2002 Jul;76(13):6841-4. doi: 10.1128/jvi.76.13.6841-6844.2002. [Article]
  20. Simmons G, Rennekamp AJ, Chai N, Vandenberghe LH, Riley JL, Bates P: Folate receptor alpha and caveolae are not required for Ebola virus glycoprotein-mediated viral infection. J Virol. 2003 Dec;77(24):13433-8. doi: 10.1128/jvi.77.24.13433-13438.2003. [Article]
  21. Simmons G, Reeves JD, Grogan CC, Vandenberghe LH, Baribaud F, Whitbeck JC, Burke E, Buchmeier MJ, Soilleux EJ, Riley JL, Doms RW, Bates P, Pohlmann S: DC-SIGN and DC-SIGNR bind ebola glycoproteins and enhance infection of macrophages and endothelial cells. Virology. 2003 Jan 5;305(1):115-23. [Article]
  22. Dolnik O, Volchkova V, Garten W, Carbonnelle C, Becker S, Kahnt J, Stroher U, Klenk HD, Volchkov V: Ectodomain shedding of the glycoprotein GP of Ebola virus. EMBO J. 2004 May 19;23(10):2175-84. doi: 10.1038/sj.emboj.7600219. Epub 2004 Apr 22. [Article]
  23. Takada A, Fujioka K, Tsuiji M, Morikawa A, Higashi N, Ebihara H, Kobasa D, Feldmann H, Irimura T, Kawaoka Y: Human macrophage C-type lectin specific for galactose and N-acetylgalactosamine promotes filovirus entry. J Virol. 2004 Mar;78(6):2943-7. doi: 10.1128/jvi.78.6.2943-2947.2004. [Article]
  24. Wahl-Jensen VM, Afanasieva TA, Seebach J, Stroher U, Feldmann H, Schnittler HJ: Effects of Ebola virus glycoproteins on endothelial cell activation and barrier function. J Virol. 2005 Aug;79(16):10442-50. doi: 10.1128/JVI.79.16.10442-10450.2005. [Article]
  25. Chandran K, Sullivan NJ, Felbor U, Whelan SP, Cunningham JM: Endosomal proteolysis of the Ebola virus glycoprotein is necessary for infection. Science. 2005 Jun 10;308(5728):1643-5. doi: 10.1126/science.1110656. Epub 2005 Apr 14. [Article]
  26. Wahl-Jensen V, Kurz SK, Hazelton PR, Schnittler HJ, Stroher U, Burton DR, Feldmann H: Role of Ebola virus secreted glycoproteins and virus-like particles in activation of human macrophages. J Virol. 2005 Feb;79(4):2413-9. doi: 10.1128/JVI.79.4.2413-2419.2005. [Article]
  27. Sullivan NJ, Peterson M, Yang ZY, Kong WP, Duckers H, Nabel E, Nabel GJ: Ebola virus glycoprotein toxicity is mediated by a dynamin-dependent protein-trafficking pathway. J Virol. 2005 Jan;79(1):547-53. doi: 10.1128/JVI.79.1.547-553.2005. [Article]
  28. Schornberg K, Matsuyama S, Kabsch K, Delos S, Bouton A, White J: Role of endosomal cathepsins in entry mediated by the Ebola virus glycoprotein. J Virol. 2006 Apr;80(8):4174-8. doi: 10.1128/JVI.80.8.4174-4178.2006. [Article]
  29. Alazard-Dany N, Volchkova V, Reynard O, Carbonnelle C, Dolnik O, Ottmann M, Khromykh A, Volchkov VE: Ebola virus glycoprotein GP is not cytotoxic when expressed constitutively at a moderate level. J Gen Virol. 2006 May;87(Pt 5):1247-1257. doi: 10.1099/vir.0.81361-0. [Article]
  30. Marzi A, Akhavan A, Simmons G, Gramberg T, Hofmann H, Bates P, Lingappa VR, Pohlmann S: The signal peptide of the ebolavirus glycoprotein influences interaction with the cellular lectins DC-SIGN and DC-SIGNR. J Virol. 2006 Jul;80(13):6305-17. doi: 10.1128/JVI.02545-05. [Article]
  31. Kuhn JH, Radoshitzky SR, Guth AC, Warfield KL, Li W, Vincent MJ, Towner JS, Nichol ST, Bavari S, Choe H, Aman MJ, Farzan M: Conserved receptor-binding domains of Lake Victoria marburgvirus and Zaire ebolavirus bind a common receptor. J Biol Chem. 2006 Jun 9;281(23):15951-8. doi: 10.1074/jbc.M601796200. Epub 2006 Apr 4. [Article]
  32. Saeed MF, Kolokoltsov AA, Albrecht T, Davey RA: Cellular entry of ebola virus involves uptake by a macropinocytosis-like mechanism and subsequent trafficking through early and late endosomes. PLoS Pathog. 2010 Sep 16;6(9):e1001110. doi: 10.1371/journal.ppat.1001110. [Article]
  33. Bhattacharyya S, Warfield KL, Ruthel G, Bavari S, Aman MJ, Hope TJ: Ebola virus uses clathrin-mediated endocytosis as an entry pathway. Virology. 2010 May 25;401(1):18-28. doi: 10.1016/j.virol.2010.02.015. Epub 2010 Mar 3. [Article]
  34. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR: Ebola virus entry requires the cholesterol transporter Niemann-Pick C1. Nature. 2011 Aug 24;477(7364):340-3. doi: 10.1038/nature10348. [Article]
  35. Brecher M, Schornberg KL, Delos SE, Fusco ML, Saphire EO, White JM: Cathepsin cleavage potentiates the Ebola virus glycoprotein to undergo a subsequent fusion-relevant conformational change. J Virol. 2012 Jan;86(1):364-72. doi: 10.1128/JVI.05708-11. Epub 2011 Oct 26. [Article]
  36. Escudero-Perez B, Volchkova VA, Dolnik O, Lawrence P, Volchkov VE: Shed GP of Ebola virus triggers immune activation and increased vascular permeability. PLoS Pathog. 2014 Nov 20;10(11):e1004509. doi: 10.1371/journal.ppat.1004509. eCollection 2014 Nov. [Article]
  37. Vande Burgt NH, Kaletsky RL, Bates P: Requirements within the Ebola Viral Glycoprotein for Tetherin Antagonism. Viruses. 2015 Oct 26;7(10):5587-602. doi: 10.3390/v7102888. [Article]
  38. Dolnik O, Volchkova VA, Escudero-Perez B, Lawrence P, Klenk HD, Volchkov VE: Shedding of Ebola Virus Surface Glycoprotein Is a Mechanism of Self-regulation of Cellular Cytotoxicity and Has a Direct Effect on Virus Infectivity. J Infect Dis. 2015 Oct 1;212 Suppl 2:S322-8. doi: 10.1093/infdis/jiv268. Epub 2015 Jun 19. [Article]
  39. Brinkmann C, Nehlmeier I, Walendy-Gnirss K, Nehls J, Gonzalez Hernandez M, Hoffmann M, Qiu X, Takada A, Schindler M, Pohlmann S: The Tetherin Antagonism of the Ebola Virus Glycoprotein Requires an Intact Receptor-Binding Domain and Can Be Blocked by GP1-Specific Antibodies. J Virol. 2016 Nov 28;90(24):11075-11086. doi: 10.1128/JVI.01563-16. Print 2016 Dec 15. [Article]
  40. Favier AL, Gout E, Reynard O, Ferraris O, Kleman JP, Volchkov V, Peyrefitte C, Thielens NM: Enhancement of Ebola Virus Infection via Ficolin-1 Interaction with the Mucin Domain of GP Glycoprotein. J Virol. 2016 May 12;90(11):5256-5269. doi: 10.1128/JVI.00232-16. Print 2016 Jun 1. [Article]
  41. Iampietro M, Younan P, Nishida A, Dutta M, Lubaki NM, Santos RI, Koup RA, Katze MG, Bukreyev A: Ebola virus glycoprotein directly triggers T lymphocyte death despite of the lack of infection. PLoS Pathog. 2017 May 22;13(5):e1006397. doi: 10.1371/journal.ppat.1006397. eCollection 2017 May. [Article]
  42. Rizk MG, Basler CF, Guatelli J: Cooperation of the Ebola Virus Proteins VP40 and GP1,2 with BST2 To Activate NF-kappaB Independently of Virus-Like Particle Trapping. J Virol. 2017 Oct 27;91(22). pii: JVI.01308-17. doi: 10.1128/JVI.01308-17. Print 2017 Nov 15. [Article]
  43. Gonzalez-Hernandez M, Hoffmann M, Brinkmann C, Nehls J, Winkler M, Schindler M, Pohlmann S: A GXXXA Motif in the Transmembrane Domain of the Ebola Virus Glycoprotein Is Required for Tetherin Antagonism. J Virol. 2018 Jun 13;92(13). pii: JVI.00403-18. doi: 10.1128/JVI.00403-18. Print 2018 Jul 1. [Article]
  44. Edri A, Shemesh A, Iraqi M, Matalon O, Brusilovsky M, Hadad U, Radinsky O, Gershoni-Yahalom O, Dye JM, Mandelboim O, Barda-Saad M, Lobel L, Porgador A: The Ebola-Glycoprotein Modulates the Function of Natural Killer Cells. Front Immunol. 2018 Jul 2;9:1428. doi: 10.3389/fimmu.2018.01428. eCollection 2018. [Article]
  45. Iampietro M, Santos RI, Lubaki NM, Bukreyev A: Ebola Virus Shed Glycoprotein Triggers Differentiation, Infection, and Death of Monocytes Through Toll-Like Receptor 4 Activation. J Infect Dis. 2018 Nov 22;218(suppl_5):S327-S334. doi: 10.1093/infdis/jiy406. [Article]
  46. Malashkevich VN, Schneider BJ, McNally ML, Milhollen MA, Pang JX, Kim PS: Core structure of the envelope glycoprotein GP2 from Ebola virus at 1.9-A resolution. Proc Natl Acad Sci U S A. 1999 Mar 16;96(6):2662-7. doi: 10.1073/pnas.96.6.2662. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB15900OdesivimabapprovedyesantagonistDetails
DB15899MaftivimabapprovedyesantagonistDetails
DB15898AtoltivimabapprovedyesantagonistDetails
DB16385Ansuvimabapproved, investigationalyesantagonistDetails