Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB Kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell Proliferation.

Article Details

Citation

Podolin PL, Callahan JF, Bolognese BJ, Li YH, Carlson K, Davis TG, Mellor GW, Evans C, Roshak AK

Attenuation of murine collagen-induced arthritis by a novel, potent, selective small molecule inhibitor of IkappaB Kinase 2, TPCA-1 (2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide), occurs via reduction of proinflammatory cytokines and antigen-induced T cell Proliferation.

J Pharmacol Exp Ther. 2005 Jan;312(1):373-81. doi: 10.1124/jpet.104.074484. Epub 2004 Aug 17.

PubMed ID
15316093 [ View in PubMed
]
Abstract

Demonstration that IkappaB kinase 2 (IKK-2) plays a pivotal role in the nuclear factor-kappaB-regulated production of proinflammatory molecules by stimuli such as tumor necrosis factor (TNF)-alpha and interleukin (IL)-1 suggests that inhibition of IKK-2 may be beneficial in the treatment of rheumatoid arthritis. In the present study, we demonstrate that a novel, potent (IC(50) = 17.9 nM), and selective inhibitor of human IKK-2, 2-[(aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (TPCA-1), inhibits lipopolysaccharide-induced human monocyte production of TNF-alpha, IL-6, and IL-8 with an IC(50) = 170 to 320 nM. Prophylactic administration of TPCA-1 at 3, 10, or 20 mg/kg, i.p., b.i.d., resulted in a dose-dependent reduction in the severity of murine collagen-induced arthritis (CIA). The significantly reduced disease severity and delay of disease onset resulting from administration of TPCA-1 at 10 mg/kg, i.p., b.i.d. were comparable to the effects of the antirheumatic drug, etanercept, when administered prophylactically at 4 mg/kg, i.p., every other day. Nuclear localization of p65, as well as levels of IL-1beta, IL-6, TNF-alpha, and interferon-gamma, were significantly reduced in the paw tissue of TPCA-1- and etanercept-treated mice. In addition, administration of TPCA-1 in vivo resulted in significantly decreased collagen-induced T cell proliferation ex vivo. Therapeutic administration of TPCA-1 at 20 mg/kg, but not at 3 or 10 mg/kg, i.p., b.i.d., significantly reduced the severity of CIA, as did etanercept administration at 12.5 mg/kg, i.p., every other day. These results suggest that reduction of proinflammatory mediators and inhibition of antigen-induced T cell proliferation are mechanisms underlying the attenuation of CIA by the IKK-2 inhibitor, TPCA-1.

DrugBank Data that Cites this Article

Drugs