Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian alpha4beta2 and Drosophila nicotinic receptors.

Article Details

Citation

Zhang N, Tomizawa M, Casida JE

Structural features of azidopyridinyl neonicotinoid probes conferring high affinity and selectivity for mammalian alpha4beta2 and Drosophila nicotinic receptors.

J Med Chem. 2002 Jun 20;45(13):2832-40.

PubMed ID
12061885 [ View in PubMed
]
Abstract

The higher toxicity of neonicotinoid insecticides such as N-(6-chloropyridin-3-ylmethyl)-2-nitroiminoimidazolidine (imidacloprid) to insects than mammals is due in large part to target site specificity at the corresponding nicotinic acetylcholine receptors (nAChRs). We propose that neonicotinoids with a protonated N-unsubstituted imine or equivalent substituent recognize the anionic subsite of the mammalian alpha4beta2 nAChR whereas the negatively charged (delta(-)) tip of the neonicotinoid insecticides interacts with a putative cationic subsite of the insect nAChR. This hypothesis can be tested by using two photoaffinity probes that differ only in the N-unsubstituted imine vs negatively charged (delta(-)) tip. Synthesis methodology was developed for compounds combining three moieties: pyridin-3-ylmethyl or 6-chloropyridin-3-ylmethyl and their 4- and 5-azido analogues; imidazolidine, 4-imidazoline or 4-thiazoline; and N-unsubstituted imine, nitroimine, cyanoimine, or nitromethylene. Structure-activity studies compared displacement of [(3)H]nicotine binding in mammalian alpha4beta2 nAChR and [(3)H]imidacloprid binding in Drosophila nAChR. Preferred compounds are N-(5-azido-6-chloropyridin-3-ylmethyl) with 2-iminothiazoline for alpha4beta2 (K(i) = 0.47 nM) and with 2-nitroiminothiazoline or 2-nitromethyleneimidazolidine for Drosophila (K(i) = 0.72-3.9 nM).

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
NicotineNeuronal acetylcholine receptor subunit beta-2Ki (nM)2N/AN/ADetails