Biarylpyrazole inverse agonists at the cannabinoid CB1 receptor: importance of the C-3 carboxamide oxygen/lysine3.28(192) interaction.

Article Details

Citation

Hurst D, Umejiego U, Lynch D, Seltzman H, Hyatt S, Roche M, McAllister S, Fleischer D, Kapur A, Abood M, Shi S, Jones J, Lewis D, Reggio P

Biarylpyrazole inverse agonists at the cannabinoid CB1 receptor: importance of the C-3 carboxamide oxygen/lysine3.28(192) interaction.

J Med Chem. 2006 Oct 5;49(20):5969-87.

PubMed ID
17004712 [ View in PubMed
]
Abstract

The biarylpyrazole, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole -3-carboxamide (SR141716; 1) has been shown to act as an inverse agonist/antagonist at the cannabinoid CB1 receptor. Our previous mutant cycle study suggested that K3.28(192) is involved in a direct interaction with the C-3 substituent of 1 in wild-type (WT) CB1.(1) However, these results did not establish what part of the C-3 substituent of 1 is involved in the K3.28(192) hydrogen bond, the carboxamide oxygen or the piperidine nitrogen. Furthermore, our previous calcium channel assay results for 5-(4- chlorophenyl)-3-[(E)-2-cyclohexylethenyl]-1-(2,4-dichlorophenyl)-4- methyl-1H-pyrazole (VCHSR; 2) (an analogue of 1 that lacks hydrogen-bonding capability in its C-3 substituent) showed that this compound acts as a neutral antagonist, a result that is in contrast to 1, which acts as an inverse agonist in this same assay.(1) These results suggested a relationship between biarylpyrazole interaction with K3.28(192) at CB1 and inverse agonism, but these results were for a single pair of compounds (1 and 2). The work presented here was designed to test two hypotheses derived from our modeling and mutant cycle results. The hypotheses are as follows: (1) it is the carboxamide oxygen of the C-3 substituent of 1 that interacts directly with K3.28(192) and (2) the interaction with K3.28(192) is crucial for the production of inverse agonism for biarylpyrazoles such as 1. To determine whether the carboxamide oxygen or the piperidine nitrogen of the C-3 substituent may be the interaction site for K3.28(192), we designed, synthesized, and evaluated a new set of analogues of 1 (3-6, Chart 1) in which modifications only to the C-3 substituent of 1 have been made. In each case, the modifications that were made preserved the geometry of this substituent in 1. The absence of the piperidine nitrogen was not found to affect affinity, whereas the absence of the carboxamide oxygen resulted in a reduction in affinity. CB1 docking studies in an inactive state model of CB1 resulted in the trend, 3,1<5,4<2<6 for ligand/CB1 interaction energies. This trend was consistent with the trend in WT CB1 Ki values versus [3H]CP55,940 reported here. In calcium channel assays, all analogues with carboxamide oxygens (1, 3, and 4) were found to be inverse agonists, whereas those that lacked this group (2, 5, and 6) were found to be neutral antagonists. Taken together, these results support the hypothesis that it is the carboxamide oxygen of the C-3 substituent of 1 that engages in a hydrogen bond with K3.28(192) in WT CB1. Furthermore, functional results for 1-6 support the hypothesis that the interaction of 1 with K3.28(192) may be key to its inverse agonism.

DrugBank Data that Cites this Article

Binding Properties
DrugTargetPropertyMeasurementpHTemperature (°C)
RimonabantCannabinoid receptor 1Ki (nM)7.1N/AN/ADetails
RimonabantCannabinoid receptor 1Kd (nM)1.8N/AN/ADetails
RimonabantCannabinoid receptor 1Ki (nM)18N/AN/ADetails