Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues.
Article Details
- CitationCopy to clipboard
Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ, et al.
Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues.
J Pharmacol Exp Ther. 1995 Jan;272(1):134-42.
- PubMed ID
- 7815325 [ View in PubMed]
- Abstract
We have cloned cDNAs encoding three human alpha-1 adrenergic receptor (AR) subtypes and characterized pharmacological properties of the expressed receptor protein. A number of significant sequence corrections have been identified and compared with previously published data, at both nucleotide and amino acid levels; the most major differences occur for the human alpha-1a/dAR. Pharmacological characterization was performed simultaneously using six cloned alpha-1AR subtypes (human and rat alpha-1a/d, human and hamster alpha-1b, human and bovine alpha-1c) stably expressed in rat-1 fibroblasts at approximately equal receptor concentrations (1-2 pmol/mg of total protein). In general, human alpha-1AR subtypes have similar pharmacology compared to their rat, hamster and bovine homologs, although a few minor species differences important for alpha-1AR classification are noted. In addition, much lower inactivation (approximately 20%) by the alkylating agent chloroethylclonidine is noted in this study compared to previous reports for both human and bovine alpha-1cAR membrane preparations. All six alpha-1AR subtypes couple to phosphoinositide hydrolysis in a pertussis toxin-insensitive manner, including the cloned human alpha-1a/dAR which had not been expressed previously. In spite of significant sequence differences between human alpha-1ARs and their other species counterparts, previously established ligand selectivity remains fairly comparable. In summary, these data represent the first side-by-side comparison of pharmacological properties between species homologs of alpha-1AR subtypes and should facilitate the development of alpha-1AR subtype selective drugs for clinical use.