Genome polyprotein

Details

Name
Genome polyprotein
Synonyms
  • 3.4.22.29
  • P2A
Gene Name
Not Available
Organism
Poliovirus type 1 (strain Mahoney)
Amino acid sequence
>lcl|BSEQ0019147|Genome polyprotein
MGAQVSSQKVGAHENSNRAYGGSTINYTTINYYRDSASNAASKQDFSQDPSKFTEPIKDV
LIKTAPMLNSPNIEACGYSDRVLQLTLGNSTITTQEAANSVVAYGRWPEYLRDSEANPVD
QPTEPDVAACRFYTLDTVSWTKESRGWWWKLPDALRDMGLFGQNMYYHYLGRSGYTVHVQ
CNASKFHQGALGVFAVPEMCLAGDSNTTTMHTSYQNANPGEKGGTFTGTFTPDNNQTSPA
RRFCPVDYLLGNGTLLGNAFVFPHQIINLRTNNCATLVLPYVNSLSIDSMVKHNNWGIAI
LPLAPLNFASESSPEIPITLTIAPMCCEFNGLRNITLPRLQGLPVMNTPGSNQYLTADNF
QSPCALPEFDVTPPIDIPGEVKNMMELAEIDTMIPFDLSATKKNTMEMYRVRLSDKPHTD
DPILCLSLSPASDPRLSHTMLGEILNYYTHWAGSLKFTFLFCGFMMATGKLLVSYAPPGA
DPPKKRKEAMLGTHVIWDIGLQSSCTMVVPWISNTTYRQTIDDSFTEGGYISVFYQTRIV
VPLSTPREMDILGFVSACNDFSVRLLRDTTHIEQKALAQGLGQMLESMIDNTVRETVGAA
TSRDALPNTEASGPTHSKEIPALTAVETGATNPLVPSDTVQTRHVVQHRSRSESSIESFF
ARGACVTIMTVDNPASTTNKDKLFAVWKITYKDTVQLRRKLEFFTYSRFDMELTFVVTAN
FTETNNGHALNQVYQIMYVPPGAPVPEKWDDYTWQTSSNPSIFYTYGTAPARISVPYVGI
SNAYSHFYDGFSKVPLKDQSAALGDSLYGAASLNDFGILAVRVVNDHNPTKVTSKIRVYL
KPKHIRVWCPRPPRAVAYYGPGVDYKDGTLTPLSTKDLTTYGFGHQNKAVYTAGYKICNY
HLATQDDLQNAVNVMWSRDLLVTESRAQGTDSIARCNCNAGVYYCESRRKYYPVSFVGPT
FQYMEANNYYPARYQSHMLIGHGFASPGDCGGILRCHHGVIGIITAGGEGLVAFSDIRDL
YAYEEEAMEQGITNYIESLGAAFGSGFTQQISDKITELTNMVTSTITEKLLKNLIKIISS
LVIITRNYEDTTTVLATLALLGCDASPWQWLRKKACDVLEIPYVIKQGDSWLKKFTEACN
AAKGLEWVSNKISKFIDWLKEKIIPQARDKLEFVTKLRQLEMLENQISTIHQSCPSQEHQ
EILFNNVRWLSIQSKRFAPLYAVEAKRIQKLEHTINNYIQFKSKHRIEPVCLLVHGSPGT
GKSVATNLIARAIAERENTSTYSLPPDPSHFDGYKQQGVVIMDDLNQNPDGADMKLFCQM
VSTVEFIPPMASLEEKGILFTSNYVLASTNSSRISPPTVAHSDALARRFAFDMDIQVMNE
YSRDGKLNMAMATEMCKNCHQPANFKRCCPLVCGKAIQLMDKSSRVRYSIDQITTMIINE
RNRRSNIGNCMEALFQGPLQYKDLKIDIKTSPPPECINDLLQAVDSQEVRDYCEKKGWIV
NITSQVQTERNINRAMTILQAVTTFAAVAGVVYVMYKLFAGHQGAYTGLPNKKPNVPTIR
TAKVQGPGFDYAVAMAKRNIVTATTSKGEFTMLGVHDNVAILPTHASPGESIVIDGKEVE
ILDAKALEDQAGTNLEITIITLKRNEKFRDIRPHIPTQITETNDGVLIVNTSKYPNMYVP
VGAVTEQGYLNLGGRQTARTLMYNFPTRAGQCGGVITCTGKVIGMHVGGNGSHGFAAALK
RSYFTQSQGEIQWMRPSKEVGYPIINAPSKTKLEPSAFHYVFEGVKEPAVLTKNDPRLKT
DFEEAIFSKYVGNKITEVDEYMKEAVDHYAGQLMSLDINTEQMCLEDAMYGTDGLEALDL
STSAGYPYVAMGKKKRDILNKQTRDTKEMQKLLDTYGINLPLVTYVKDELRSKTKVEQGK
SRLIEASSLNDSVAMRMAFGNLYAAFHKNPGVITGSAVGCDPDLFWSKIPVLMEEKLFAF
DYTGYDASLSPAWFEALKMVLEKIGFGDRVDYIDYLNHSHHLYKNKTYCVKGGMPSGCSG
TSIFNSMINNLIIRTLLLKTYKGIDLDHLKMIAYGDDVIASYPHEVDASLLAQSGKDYGL
TMTPADKSATFETVTWENVTFLKRFFRADEKYPFLIHPVMPMKEIHESIRWTKDPRNTQD
HVRSLCLLAWHNGEEEYNKFLAKIRSVPIGRALLLPEYSTLYRRWLDSF
Number of residues
2209
Molecular Weight
246538.14
Theoretical pI
7.13
GO Classification
Functions
ATP binding / cysteine-type endopeptidase activity / ion channel activity / RNA binding / RNA helicase activity / RNA-directed RNA polymerase activity / structural molecule activity
Processes
endocytosis involved in viral entry into host cell / induction by virus of host autophagy / pore formation by virus in membrane of host cell / pore-mediated entry of viral genome into host cell / positive stranded viral RNA replication / protein oligomerization / RNA-protein covalent cross-linking / suppression by virus of host mRNA export from nucleus / suppression by virus of host RIG-I activity by RIG-I proteolysis / suppression by virus of host translation initiation factor activity / transcription, DNA-templated / transcription, RNA-templated / viral RNA genome replication / virion attachment to host cell
Components
host cell cytoplasmic vesicle membrane / integral to membrane of host cell / membrane / T=pseudo3 icosahedral viral capsid
General Function
Structural molecule activity
Specific Function
Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host cell receptor PVR to provide virion attachment to target host epithelial cells. This attachment induces virion internalization predominantly through clathrin- and caveolin-independent endocytosis in Hela cells and through caveolin-mediated endocytosis in brain microvascular endothelial cells. Tyrosine kinases are probably involved in the entry process. Virus binding to PVR induces increased junctional permeability and rearrangement of junctional proteins. Modulation of endothelial tight junctions, as well as cytolytic infection of endothelial cells themselves, may result in loss of endothelial integrity which may help the virus to reach the CNS. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks.Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome.Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome.Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity).Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores including NUP98, NUP62 and NUP153.Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication.Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Triggers host autophagy by interacting with host BECN1 and thereby promotes viral replication. Participates in viral replication and interacts with host DHX9. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3.Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity.Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface.Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication.Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity.Protease 3C: May cleave host PABP and contribute to host translation shutoff.RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated.
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Virion
Gene sequence
>lcl|BSEQ0019148|Genome polyprotein
ATGGGTGCTCAGGTTTCATCACAGAAAGTGGGCGCACATGAAAACTCAAATAGAGCGTAT
GGTGGTTCTACCATTAATTACACCACCATTAATTATTATAGAGATTCAGCTAGTAACGCG
GCTTCGAAACAGGACTTCTCTCAAGACCCTTCCAAGTTCACCGAGCCCATCAAGGATGTC
CTGATAAAAACAGCCCCAATGCTAAACTCGCCAAACATAGAGGCTTGCGGGTATAGCGAT
AGAGTACTGCAATTAACACTGGGAAACTCCACTATAACCACACAGGAGGCGGCTAATTCA
GTAGTCGCTTATGGGCGTTGGCCTGAATATCTGAGGGACAGCGAAGCCAATCCAGTGGAC
CAGCCGACAGAACCAGACGTCGCTGCATGCAGGTTTTATACGCTAGACACCGTGTCTTGG
ACGAAAGAGTCGCGAGGGTGGTGGTGGAAGTTGCCTGATGCACTGAGGGACATGGGACTC
TTTGGGCAAAATATGTACTACCACTACCTAGGTAGGTCCGGGTACACCGTGCATGTACAG
TGTAACGCCTCCAAATTCCACCAGGGGGCACTAGGGGTATTCGCCGTACCAGAGATGTGT
CTGGCCGGGGATAGCAACACCACTACCATGCACACCAGCTATCAAAATGCCAATCCTGGC
GAGAAAGGAGGCACTTTCACGGGTACGTTCACTCCTGACAACAACCAGACATCACCTGCC
CGCAGGTTCTGCCCGGTGGATTACCTCCTTGGAAATGGCACGTTGTTGGGGAATGCCTTT
GTGTTCCCGCACCAGATAATAAACCTACGGACCAACAACTGTGCTACACTGGTACTCCCT
TACGTGAACTCCCTCTCGATAGATAGTATGGTAAAGCACAATAATTGGGGAATTGCAATA
TTACCATTGGCCCCATTAAATTTTGCTAGTGAGTCCTCCCCAGAGATTCCAATCACCTTG
ACCATAGCCCCTATGTGCTGTGAGTTCAATGGATTAAGAAACATCACCCTGCCACGCTTA
CAGGGCCTGCCGGTCATGAACACCCCTGGTAGCAATCAATATCTTACTGCAGACAACTTC
CAGTCACCGTGTGCGCTGCCTGAATTTGATGTGACCCCACCTATTGACATACCCGGTGAA
GTAAAGAACATGATGGAATTGGCAGAAATCGACACCATGATTCCCTTTGACTTAAGTGCC
ACAAAAAAGAACACCATGGAAATGTATAGGGTTCGGTTAAGTGACAAACCACATACAGAC
GATCCCATACTCTGCCTGTCACTCTCTCCAGCTTCAGATCCTAGGTTGTCACATACTATG
CTTGGAGAAATCCTAAATTACTACACACACTGGGCAGGATCCCTGAAGTTCACGTTTCTG
TTCTGTGGATTCATGATGGCAACTGGCAAACTGTTGGTGTCATACGCGCCTCCTGGAGCC
GACCCACCAAAGAAGCGTAAGGAGGCGATGTTGGGAACACATGTGATCTGGGACATAGGA
CTGCAGTCCTCATGTACTATGGTAGTGCCATGGATTAGCAACACCACGTATCGGCAAACC
ATAGATGATAGTTTCACCGAAGGCGGATACATCAGCGTCTTCTACCAAACTAGAATAGTC
GTCCCTCTTTCGACACCCAGAGAGATGGACATCCTTGGTTTTGTGTCAGCGTGTAATGAC
TTCAGCGTGCGCTTGTTGCGAGATACCACACATATAGAGCAAAAAGCGCTAGCACAGGGG
TTAGGTCAGATGCTTGAAAGCATGATTGACAACACAGTCCGTGAAACGGTGGGGGCGGCA
ACATCTAGAGACGCTCTCCCAAACACTGAAGCCAGTGGACCAACACACTCCAAGGAAATT
CCGGCACTCACCGCAGTGGAAACTGGGGCCACAAATCCACTAGTCCCTTCTGATACAGTG
CAAACCAGACATGTTGTACAACATAGGTCAAGGTCAGAGTCTAGCATAGAGTCTTTCTTC
GCGCGGGGTGCATGCGTGACCATTATGACCGTGGATAACCCAGCTTCCACCACGAATAAG
GATAAGCTATTTGCAGTGTGGAAGATCACTTATAAAGATACTGTCCAGTTACGGAGGAAA
TTGGAGTTCTTCACCTATTCTAGATTTGATATGGAACTTACCTTTGTGGTTACTGCAAAT
TTCACTGAGACTAACAATGGGCATGCCTTAAATCAAGTGTACCAAATTATGTACGTACCA
CCAGGCGCTCCAGTGCCCGAGAAATGGGACGACTACACATGGCAAACCTCATCAAATCCA
TCAATCTTTTACACCTACGGAACAGCTCCAGCCCGGATCTCGGTACCGTATGTTGGTATT
TCGAACGCCTATTCACACTTTTACGACGGTTTTTCCAAAGTACCACTGAAGGACCAGTCG
GCAGCACTAGGTGACTCCCTTTATGGTGCAGCATCTCTAAATGACTTCGGTATTTTGGCT
GTTAGAGTAGTCAATGATCACAACCCGACCAAGGTCACCTCCAAAATCAGAGTGTATCTA
AAACCCAAACACATCAGAGTCTGGTGCCCGCGTCCACCGAGGGCAGTGGCGTACTACGGC
CCTGGAGTGGATTACAAGGATGGTACGCTTACACCCCTCTCCACCAAGGATCTGACCACA
TATGGATTCGGACACCAAAACAAAGCGGTGTACACTGCAGGTTACAAAATTTGCAACTAC
CACTTGGCCACTCAGGATGATTTGCAAAACGCAGTGAACGTCATGTGGAGTAGAGACCTC
TTAGTCACAGAATCAAGAGCCCAGGGCACCGATTCAATCGCAAGGTGCAATTGCAACGCA
GGGGTGTACTACTGCGAGTCTAGAAGGAAATACTACCCAGTATCCTTCGTTGGCCCAACG
TTCCAGTACATGGAGGCTAATAACTATTACCCAGCTAGGTACCAGTCCCATATGCTCATT
GGCCATGGATTCGCATCTCCAGGGGATTGTGGTGGCATACTCAGATGTCACCACGGGGTG
ATAGGGATCATTACTGCTGGTGGCGAAGGGTTGGTTGCATTTTCAGACATTAGAGACTTG
TATGCCTACGAAGAAGAAGCCATGGAACAAGGCATCACCAATTACATAGAGTCACTTGGG
GCCGCATTTGGAAGTGGATTTACTCAGCAGATTAGCGACAAAATAACAGAGTTGACCAAT
ATGGTGACCAGTACCATCACTGAAAAGCTACTTAAGAACTTGATCAAGATCATATCCTCA
CTAGTTATTATAACTAGGAACTATGAAGACACCACAACAGTGCTCGCTACCCTGGCCCTT
CTTGGGTGTGATGCTTCACCATGGCAGTGGCTTAGAAAGAAAGCATGCGATGTTCTGGAG
ATACCTTATGTCATCAAGCAAGGTGACAGTTGGTTGAAGAAGTTTACTGAAGCATGCAAC
GCAGCTAAGGGACTGGAGTGGGTGTCAAACAAAATCTCAAAATTCATTGATTGGCTCAAG
GAGAAAATTATCCCACAAGCTAGAGATAAGTTGGAATTTGTAACAAAACTTAGACAACTA
GAAATGCTGGAAAACCAAATCTCAACTATACACCAATCATGCCCTAGTCAGGAACACCAG
GAAATTCTATTCAATAATGTCAGATGGTTATCCATCCAGTCTAAGAGGTTTGCCCCTCTT
TACGCAGTGGAAGCCAAAAGAATACAGAAACTAGAGCATACTATTAACAACTACATACAG
TTCAAGAGCAAACACCGTATTGAACCAGTATGTTTGCTAGTACATGGCAGCCCCGGAACA
GGTAAATCTGTAGCAACCAACCTGATTGCTAGAGCCATAGCTGAAAGAGAAAACACGTCC
ACGTACTCGCTACCCCCGGATCCATCACACTTCGACGGATACAAACAACAGGGAGTGGTG
ATTATGGACGACCTGAATCAAAACCCAGATGGTGCGGACATGAAGCTGTTCTGTCAGATG
GTATCAACAGTGGAGTTTATACCACCCATGGCATCCCTGGAGGAGAAAGGAATCCTGTTT
ACTTCAAATTACGTTCTAGCATCCACAAACTCAAGCAGAATTTCCCCCCCCACTGTGGCA
CACAGTGATGCATTAGCCAGGCGCTTTGCGTTCGACATGGACATTCAGGTCATGAATGAG
TATTCTAGAGATGGGAAATTGAACATGGCCATGGCTACTGAAATGTGTAAGAACTGTCAC
CAACCAGCAAACTTTAAGAGATGCTGTCCTTTAGTGTGTGGTAAGGCAATTCAATTAATG
GACAAATCTTCCAGAGTTAGATACAGTATTGACCAGATCACTACAATGATTATCAATGAG
AGAAACAGAAGATCCAACATTGGCAATTGTATGGAGGCTTTGTTTCAAGGACCACTCCAG
TATAAAGACTTGAAAATTGACATCAAGACGAGTCCCCCTCCTGAATGTATCAATGACTTG
CTCCAAGCAGTTGACTCCCAGGAGGTGAGAGATTACTGTGAGAAGAAGGGTTGGATAGTC
AACATCACCAGCCAGGTTCAAACAGAAAGGAACATCAACAGGGCAATGACAATTCTACAA
GCGGTGACAACCTTCGCCGCAGTGGCTGGAGTTGTCTATGTCATGTATAAACTGTTTGCT
GGACACCAGGGAGCATACACTGGTTTACCAAACAAAAAACCCAACGTGCCCACCATTCGG
ACAGCAAAGGTACAAGGACCAGGGTTCGATTACGCAGTGGCTATGGCTAAAAGAAACATT
GTTACAGCAACTACTAGCAAGGGAGAGTTCACTATGTTAGGAGTCCACGACAACGTGGCT
ATTTTACCAACCCACGCTTCACCTGGTGAAAGCATTGTGATCGATGGCAAAGAAGTGGAG
ATCTTGGATGCCAAAGCGCTCGAAGATCAAGCAGGAACCAATCTTGAAATCACTATAATC
ACTCTAAAGAGAAATGAAAAGTTCAGAGACATTAGACCACATATACCTACTCAAATCACT
GAGACAAATGATGGAGTCTTGATCGTGAACACTAGCAAGTACCCCAATATGTATGTTCCT
GTCGGTGCTGTGACTGAACAGGGATATCTAAATCTCGGTGGGCGCCAAACTGCTCGTACT
CTAATGTACAACTTTCCAACCAGAGCAGGACAGTGTGGTGGAGTCATCACATGTACTGGG
AAAGTCATCGGGATGCATGTTGGTGGGAACGGTTCACACGGGTTTGCAGCGGCCCTGAAG
CGATCATACTTCACTCAGAGTCAAGGTGAAATCCAGTGGATGAGACCTTCGAAGGAAGTG
GGATATCCAATCATAAATGCCCCGTCCAAAACCAAGCTTGAACCCAGTGCTTTCCACTAT
GTGTTTGAAGGGGTGAAGGAACCAGCAGTCCTCACTAAAAACGATCCCAGGCTTAAGACA
GACTTTGAGGAGGCAATTTTCTCCAAGTACGTGGGTAACAAAATTACTGAAGTGGATGAG
TACATGAAAGAGGCAGTAGACCACTATGCTGGCCAGCTCATGTCACTAGACATCAACACA
GAACAAATGTGCTTGGAGGATGCCATGTATGGCACTGATGGTCTAGAAGCACTTGATTTG
TCCACCAGTGCTGGCTACCCTTATGTAGCAATGGGAAAGAAGAAGAGAGACATCTTGAAC
AAACAAACCAGAGACACTAAGGAAATGCAAAAACTGCTCGACACATATGGAATCAACCTC
CCACTGGTGACTTATGTAAAGGATGAACTTAGATCCAAAACAAAGGTTGAGCAGGGGAAA
TCCAGATTAATTGAAGCTTCTAGTTTGAATGACTCAGTGGCAATGAGAATGGCTTTTGGG
AACCTATATGCTGCTTTTCACAAAAACCCAGGAGTGATAACAGGTTCAGCAGTGGGGTGC
GATCCAGATTTGTTTTGGAGCAAAATTCCGGTATTGATGGAAGAGAAGCTGTTTGCTTTT
GACTACACAGGGTATGATGCATCTCTCAGCCCTGCTTGGTTCGAGGCACTAAAGATGGTG
CTTGAGAAAATCGGATTCGGAGACAGAGTTGACTACATCGACTACCTAAACCACTCACAC
CACCTGTACAAGAATAAAACATACTGTGTCAAGGGCGGTATGCCATCTGGCTGCTCAGGC
ACTTCAATTTTTAACTCAATGATTAACAACTTGATTATCAGGACACTCTTACTGAAAACC
TACAAGGGCATAGATTTAGACCACCTAAAAATGATTGCCTATGGTGATGATGTAATTGCT
TCCTACCCCCATGAAGTTGACGCTAGTCTCCTAGCCCAATCAGGAAAAGACTATGGACTA
ACTATGACTCCAGCTGACAAATCAGCTACATTTGAAACAGTCACATGGGAGAATGTAACA
TTCTTGAAGAGATTCTTCAGGGCAGACGAGAAATACCCATTTCTTATTCATCCAGTAATG
CCAATGAAGGAAATTCATGAATCAATTAGATGGACTAAAGATCCTAGGAACACTCAGGAT
CACGTTCGCTCTCTGTGCCTTTTAGCTTGGCACAATGGCGAAGAAGAATATAACAAATTC
CTAGCTAAAATCAGGAGTGTGCCAATTGGAAGAGCTTTATTGCTCCCAGAGTACTCAACA
TTGTACCGCCGTTGGCTTGACTCATTTTAG
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP03300
UniProtKB Entry NamePOLG_POL1M
GenBank Protein ID61253
GenBank Gene IDV01149
General References
  1. Kitamura N, Semler BL, Rothberg PG, Larsen GR, Adler CJ, Dorner AJ, Emini EA, Hanecak R, Lee JJ, van der Werf S, Anderson CW, Wimmer E: Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature. 1981 Jun 18;291(5816):547-53. [Article]
  2. Racaniello VR, Baltimore D: Molecular cloning of poliovirus cDNA and determination of the complete nucleotide sequence of the viral genome. Proc Natl Acad Sci U S A. 1981 Aug;78(8):4887-91. [Article]
  3. Dorner AJ, Dorner LF, Larsen GR, Wimmer E, Anderson CW: Identification of the initiation site of poliovirus polyprotein synthesis. J Virol. 1982 Jun;42(3):1017-28. [Article]
  4. Kitamura N, Adler CJ, Rothberg PG, Martinko J, Nathenson SG, Wimmer E: The genome-linked protein of picornaviruses. VII. Genetic mapping of poliovirus VPg by protein and RNA sequence studies. Cell. 1980 Aug;21(1):295-302. [Article]
  5. Ambros V, Baltimore D: Protein is linked to the 5' end of poliovirus RNA by a phosphodiester linkage to tyrosine. J Biol Chem. 1978 Aug 10;253(15):5263-6. [Article]
  6. Delarue M, Poch O, Tordo N, Moras D, Argos P: An attempt to unify the structure of polymerases. Protein Eng. 1990 May;3(6):461-7. [Article]
  7. Moscufo N, Simons J, Chow M: Myristoylation is important at multiple stages in poliovirus assembly. J Virol. 1991 May;65(5):2372-80. [Article]
  8. Marc D, Girard M, van der Werf S: A Gly1 to Ala substitution in poliovirus capsid protein VP0 blocks its myristoylation and prevents viral assembly. J Gen Virol. 1991 May;72 ( Pt 5):1151-7. [Article]
  9. Rodriguez PL, Carrasco L: Poliovirus protein 2C has ATPase and GTPase activities. J Biol Chem. 1993 Apr 15;268(11):8105-10. [Article]
  10. Harris KS, Xiang W, Alexander L, Lane WS, Paul AV, Wimmer E: Interaction of poliovirus polypeptide 3CDpro with the 5' and 3' termini of the poliovirus genome. Identification of viral and cellular cofactors needed for efficient binding. J Biol Chem. 1994 Oct 28;269(43):27004-14. [Article]
  11. Ventoso I, MacMillan SE, Hershey JW, Carrasco L: Poliovirus 2A proteinase cleaves directly the eIF-4G subunit of eIF-4F complex. FEBS Lett. 1998 Sep 11;435(1):79-83. [Article]
  12. Paul AV, Peters J, Mugavero J, Yin J, van Boom JH, Wimmer E: Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol. 2003 Jan;77(2):891-904. [Article]
  13. Strauss DM, Glustrom LW, Wuttke DS: Towards an understanding of the poliovirus replication complex: the solution structure of the soluble domain of the poliovirus 3A protein. J Mol Biol. 2003 Jul 4;330(2):225-34. [Article]
  14. Kondratova AA, Neznanov N, Kondratov RV, Gudkov AV: Poliovirus protein 3A binds and inactivates LIS1, causing block of membrane protein trafficking and deregulation of cell division. Cell Cycle. 2005 Oct;4(10):1403-10. Epub 2005 Oct 20. [Article]
  15. Choe SS, Dodd DA, Kirkegaard K: Inhibition of cellular protein secretion by picornaviral 3A proteins. Virology. 2005 Jun 20;337(1):18-29. [Article]
  16. Richards OC, Spagnolo JF, Lyle JM, Vleck SE, Kuchta RD, Kirkegaard K: Intramolecular and intermolecular uridylylation by poliovirus RNA-dependent RNA polymerase. J Virol. 2006 Aug;80(15):7405-15. [Article]
  17. Wessels E, Duijsings D, Lanke KH, van Dooren SH, Jackson CL, Melchers WJ, van Kuppeveld FJ: Effects of picornavirus 3A Proteins on Protein Transport and GBF1-dependent COP-I recruitment. J Virol. 2006 Dec;80(23):11852-60. Epub 2006 Sep 27. [Article]
  18. Tang WF, Yang SY, Wu BW, Jheng JR, Chen YL, Shih CH, Lin KH, Lai HC, Tang P, Horng JT: Reticulon 3 binds the 2C protein of enterovirus 71 and is required for viral replication. J Biol Chem. 2007 Feb 23;282(8):5888-98. Epub 2006 Dec 20. [Article]
  19. Belov GA, Altan-Bonnet N, Kovtunovych G, Jackson CL, Lippincott-Schwartz J, Ehrenfeld E: Hijacking components of the cellular secretory pathway for replication of poliovirus RNA. J Virol. 2007 Jan;81(2):558-67. Epub 2006 Nov 1. [Article]
  20. Brandenburg B, Lee LY, Lakadamyali M, Rust MJ, Zhuang X, Hogle JM: Imaging poliovirus entry in live cells. PLoS Biol. 2007 Jul;5(7):e183. Epub 2007 Jul 10. [Article]
  21. Coyne CB, Kim KS, Bergelson JM: Poliovirus entry into human brain microvascular cells requires receptor-induced activation of SHP-2. EMBO J. 2007 Sep 5;26(17):4016-28. Epub 2007 Aug 23. [Article]
  22. Strauss DM, Wuttke DS: Characterization of protein-protein interactions critical for poliovirus replication: analysis of 3AB and VPg binding to the RNA-dependent RNA polymerase. J Virol. 2007 Jun;81(12):6369-78. Epub 2007 Apr 4. [Article]
  23. Fujita K, Krishnakumar SS, Franco D, Paul AV, London E, Wimmer E: Membrane topography of the hydrophobic anchor sequence of poliovirus 3A and 3AB proteins and the functional effect of 3A/3AB membrane association upon RNA replication. Biochemistry. 2007 May 1;46(17):5185-99. Epub 2007 Apr 7. [Article]
  24. Bonderoff JM, Larey JL, Lloyd RE: Cleavage of poly(A)-binding protein by poliovirus 3C proteinase inhibits viral internal ribosome entry site-mediated translation. J Virol. 2008 Oct;82(19):9389-99. doi: 10.1128/JVI.00006-08. Epub 2008 Jul 16. [Article]
  25. Bergelson JM: New (fluorescent) light on poliovirus entry. Trends Microbiol. 2008 Feb;16(2):44-7. doi: 10.1016/j.tim.2007.12.004. Epub 2008 Jan 10. [Article]
  26. de Jong AS, de Mattia F, Van Dommelen MM, Lanke K, Melchers WJ, Willems PH, van Kuppeveld FJ: Functional analysis of picornavirus 2B proteins: effects on calcium homeostasis and intracellular protein trafficking. J Virol. 2008 Apr;82(7):3782-90. doi: 10.1128/JVI.02076-07. Epub 2008 Jan 23. [Article]
  27. Shen M, Reitman ZJ, Zhao Y, Moustafa I, Wang Q, Arnold JJ, Pathak HB, Cameron CE: Picornavirus genome replication. Identification of the surface of the poliovirus (PV) 3C dimer that interacts with PV 3Dpol during VPg uridylylation and construction of a structural model for the PV 3C2-3Dpol complex. J Biol Chem. 2008 Jan 11;283(2):875-88. Epub 2007 Nov 9. [Article]
  28. Castello A, Izquierdo JM, Welnowska E, Carrasco L: RNA nuclear export is blocked by poliovirus 2A protease and is concomitant with nucleoporin cleavage. J Cell Sci. 2009 Oct 15;122(Pt 20):3799-809. doi: 10.1242/jcs.055988. Epub 2009 Sep 29. [Article]
  29. Adams P, Kandiah E, Effantin G, Steven AC, Ehrenfeld E: Poliovirus 2C protein forms homo-oligomeric structures required for ATPase activity. J Biol Chem. 2009 Aug 14;284(33):22012-21. doi: 10.1074/jbc.M109.031807. Epub 2009 Jun 11. [Article]
  30. Kok CC, McMinn PC: Picornavirus RNA-dependent RNA polymerase. Int J Biochem Cell Biol. 2009 Mar;41(3):498-502. doi: 10.1016/j.biocel.2008.03.019. Epub 2008 Apr 7. [Article]
  31. Liu Y, Wang C, Mueller S, Paul AV, Wimmer E, Jiang P: Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis. PLoS Pathog. 2010 Aug 26;6(8):e1001066. doi: 10.1371/journal.ppat.1001066. [Article]
  32. Schein CH, Oezguen N, van der Heden van Noort GJ, Filippov DV, Paul A, Kumar E, Braun W: NMR solution structure of poliovirus uridylyated peptide linked to the genome (VPgpU). Peptides. 2010 Aug;31(8):1441-8. doi: 10.1016/j.peptides.2010.04.021. Epub 2010 May 2. [Article]
  33. Gangaramani DR, Eden EL, Shah M, Destefano JJ: The twenty-nine amino acid C-terminal cytoplasmic domain of poliovirus 3AB is critical for nucleic acid chaperone activity. RNA Biol. 2010 Nov-Dec;7(6):820-9. Epub 2010 Nov 1. [Article]
  34. Martinez-Gil L, Bano-Polo M, Redondo N, Sanchez-Martinez S, Nieva JL, Carrasco L, Mingarro I: Membrane integration of poliovirus 2B viroporin. J Virol. 2011 Nov;85(21):11315-24. doi: 10.1128/JVI.05421-11. Epub 2011 Aug 10. [Article]
  35. Teterina NL, Pinto Y, Weaver JD, Jensen KS, Ehrenfeld E: Analysis of poliovirus protein 3A interactions with viral and cellular proteins in infected cells. J Virol. 2011 May;85(9):4284-96. doi: 10.1128/JVI.02398-10. Epub 2011 Feb 23. [Article]
  36. Wang C, Jiang P, Sand C, Paul AV, Wimmer E: Alanine scanning of poliovirus 2CATPase reveals new genetic evidence that capsid protein/2CATPase interactions are essential for morphogenesis. J Virol. 2012 Sep;86(18):9964-75. doi: 10.1128/JVI.00914-12. Epub 2012 Jul 3. [Article]
  37. Roberts JA, Kuiper MJ, Thorley BR, Smooker PM, Hung A: Investigation of a predicted N-terminal amphipathic alpha-helix using atomistic molecular dynamics simulation of a complete prototype poliovirus virion. J Mol Graph Model. 2012 Sep;38:165-73. doi: 10.1016/j.jmgm.2012.06.009. Epub 2012 Jul 6. [Article]
  38. Strauss M, Levy HC, Bostina M, Filman DJ, Hogle JM: RNA transfer from poliovirus 135S particles across membranes is mediated by long umbilical connectors. J Virol. 2013 Apr;87(7):3903-14. doi: 10.1128/JVI.03209-12. Epub 2013 Jan 30. [Article]
  39. Wang J, Lyle JM, Bullitt E: Surface for catalysis by poliovirus RNA-dependent RNA polymerase. J Mol Biol. 2013 Jul 24;425(14):2529-40. doi: 10.1016/j.jmb.2013.04.007. Epub 2013 Apr 11. [Article]
  40. Hogle JM, Chow M, Filman DJ: Three-dimensional structure of poliovirus at 2.9 A resolution. Science. 1985 Sep 27;229(4720):1358-65. [Article]
  41. Filman DJ, Syed R, Chow M, Macadam AJ, Minor PD, Hogle JM: Structural factors that control conformational transitions and serotype specificity in type 3 poliovirus. EMBO J. 1989 May;8(5):1567-79. [Article]
  42. Basavappa R, Syed R, Flore O, Icenogle JP, Filman DJ, Hogle JM: Role and mechanism of the maturation cleavage of VP0 in poliovirus assembly: structure of the empty capsid assembly intermediate at 2.9 A resolution. Protein Sci. 1994 Oct;3(10):1651-69. [Article]
  43. Grant RA, Hiremath CN, Filman DJ, Syed R, Andries K, Hogle JM: Structures of poliovirus complexes with anti-viral drugs: implications for viral stability and drug design. Curr Biol. 1994 Sep 1;4(9):784-97. [Article]
  44. He Y, Bowman VD, Mueller S, Bator CM, Bella J, Peng X, Baker TS, Wimmer E, Kuhn RJ, Rossmann MG: Interaction of the poliovirus receptor with poliovirus. Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):79-84. [Article]
  45. He Y, Mueller S, Chipman PR, Bator CM, Peng X, Bowman VD, Mukhopadhyay S, Wimmer E, Kuhn RJ, Rossmann MG: Complexes of poliovirus serotypes with their common cellular receptor, CD155. J Virol. 2003 Apr;77(8):4827-35. [Article]
  46. Bubeck D, Filman DJ, Cheng N, Steven AC, Hogle JM, Belnap DM: The structure of the poliovirus 135S cell entry intermediate at 10-angstrom resolution reveals the location of an externalized polypeptide that binds to membranes. J Virol. 2005 Jun;79(12):7745-55. [Article]
  47. Zhang P, Mueller S, Morais MC, Bator CM, Bowman VD, Hafenstein S, Wimmer E, Rossmann MG: Crystal structure of CD155 and electron microscopic studies of its complexes with polioviruses. Proc Natl Acad Sci U S A. 2008 Nov 25;105(47):18284-9. doi: 10.1073/pnas.0807848105. Epub 2008 Nov 14. [Article]
  48. Levy HC, Bostina M, Filman DJ, Hogle JM: Catching a virus in the act of RNA release: a novel poliovirus uncoating intermediate characterized by cryo-electron microscopy. J Virol. 2010 May;84(9):4426-41. doi: 10.1128/JVI.02393-09. Epub 2010 Feb 24. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB03963S-(Dimethylarsenic)CysteineexperimentalunknownDetails
DB04137Guanosine-5'-TriphosphateexperimentalunknownDetails
DB08012PirodavirexperimentalunknownDetails
DB08013(METHYLPYRIDAZINE PIPERIDINE PROPYLOXYPHENYL)ETHYLACETATEexperimentalunknownDetails
DB08014(METHYLPYRIDAZINE PIPERIDINE BUTYLOXYPHENYL)ETHYLACETATEexperimentalunknownDetails
DB08231Myristic acidexperimentalunknownDetails
DB03203SphingosineexperimentalunknownDetails