Genome polyprotein

Details

Name
Genome polyprotein
Synonyms
  • 3.4.22.29
  • P2A
Gene Name
Not Available
Organism
HRV-14
Amino acid sequence
>lcl|BSEQ0017078|Genome polyprotein
MGAQVSTQKSGSHENQNILTNGSNQTFTVINYYKDAASTSSAGQSLSMDPSKFTEPVKDL
MLKGAPALNSPNVEACGYSDRVQQITLGNSTITTQEAANAVVCYAEWPEYLPDVDASDVN
KTSKPDTSVCRFYTLDSKTWTTGSKGWCWKLPDALKDMGVFGQNMFFHSLGRSGYTVHVQ
CNATKFHSGCLLVVVIPEHQLASHEGGNVSVKYTFTHPGERGIDLSSANEVGGPVKDVIY
NMNGTLLGNLLIFPHQFINLRTNNTATIVIPYINSVPIDSMTRHNNVSLMVIPIAPLTVP
TGATPSLPITVTIAPMCTEFSGIRSKSIVPQGLPTTTLPGSGQFLTTDDRQSPSALPNYE
PTPRIHIPGKVHNLLEIIQVDTLIPMNNTHTKDEVNSYLIPLNANRQNEQVFGTNLFIGD
GVFKTTLLGEIVQYYTHWSGSLRFSLMYTGPALSSAKLILAYTPPGARGPQDRREAMLGT
HVVWDIGLQSTIVMTIPWTSGVQFRYTDPDTYTSAGFLSCWYQTSLILPPETTGQVYLLS
FISACPDFKLRLMKDTQTISQTVALTEGLGDELEEVIVEKTKQTVASISSGPKHTQKVPI
LTANETGATMPVLPSDSIETRTTYMHFNGSETDVECFLGRAACVHVTEIQNKDATGIDNH
REAKLFNDWKINLSSLVQLRKKLELFTYVRFDSEYTILATASQPDSANYSSNLVVQAMYV
PPGAPNPKEWDDYTWQSASNPSVFFKVGDTSRFSVPYVGLASAYNCFYDGYSHDDAETQY
GITVLNHMGSMAFRIVNEHDEHKTLVKIRVYHRAKHVEAWIPRAPRALPYTSIGRTNYPK
NTEPVIKKRKGDIKSYGLGPRYGGIYTSNVKIMNYHLMTPEDHHNLIAPYPNRDLAIVST
GGHGAETIPHCNCTSGVYYSTYYRKYYPIICEKPTNIWIEGNPYYPSRFQAGVMKGVGPA
EPGDCGGILRCIHGPIGLLTAGGSGYVCFADIRQLECIAEEQGLSDYITGLGRAFGVGFT
DQISTKVTELQEVAKDFLTTKVLSKVVKMVSALVIICRNHDDLVTVTATLALLGCDGSPW
RFLKMYISKHFQVPYIERQANDGWFRKFNDACNAAKGLEWIANKISKLIEWIKNKVLPQA
KEKLEFCSKLKQLDILERQITTMHISNPTQEKREQLFNNVLWLEQMSQKFAPLYAVESKR
IRELKNKMVNYMQFKSKQRIEPVCVLIHGTPGSGKSLTTSIVGRAIAEHFNSAVYSLPPD
PKHFDGYQQQEVVIMDDLNQNPDGQDISMFCQMVSSVDFLPPMASLDNKGMLFTSNFVLA
STNSNTLSPPTILNPEALVRRFGFDLDICLHTTYTKNGKLNAGMSTKTCKDCHQPSNFKK
CCPLVCGKAISLVDRTTNIRYSVDQLVTAIISDFKSKMQITDSLETLFQGPVYKDLEIDV
CNTPPPECINDLLKSVDSEEIREYCKKKKWIIPEIPTNIERAMNQASMIINTILMFVSTL
GIVYVIYKLFAQTQGPYSGNPPHNKLKAPTLRPVVVQGPNTEFALSLLRKNIMTITTSKG
EFTGLGIHDRVCVIPTHAQPGDDVLVNGQKIRVKDKYKLVDPENINLELTVLTLDRNEKF
RDIRGFISEDLEGVDATLVVHSNNFTNTILEVGPVTMAGLINLSSTPTNRMIRYDYATKT
GQCGGVLCATGKIFGIHVGGNGRQGFSAQLKKQYFVEKQGQVIARHKVREFNINPVNTPT
KSKLHPSVFYDVFPGDKEPAVLSDNDPRLEVKLTESLFSKYKGNVNTEPTENMLVAVDHY
AGQLLSLDIPTSELTLKEALYGVDGLEPIDITTSAGFPYVSLGIKKRDILNKETQDTEKM
KFYLDKYGIDLPLVTYIKDELRSVDKVRLGKSRLIEASSLNDSVNMRMKLGNLYKAFHQN
PGVLTGSAVGCDPDVFWSVIPCLMDGHLMAFDYSNFDASLSPVWFVCLEKVLTKLGFAGS
SLIQSICNTHHIFRDEIYVVEGGMPSGCSGTSIFNSMINNIIIRTLILDAYKGIDLDKLK
ILAYGDDLIVSYPYELDPQVLATLGKNYGLTITPPDKSETFTKMTWENLTFLKRYFKPDQ
QFPFLVHPVMPMKDIHESIRWTKDPKNTQDHVRSLCMLAWHSGEKEYNEFIQKIRTTDIG
KCLILPEYSVLRRRWLDLF
Number of residues
2179
Molecular Weight
242989.38
Theoretical pI
7.28
GO Classification
Functions
ATP binding / cysteine-type endopeptidase activity / ion channel activity / RNA binding / RNA helicase activity / RNA-directed RNA polymerase activity / structural molecule activity
Processes
DNA replication / endocytosis involved in viral entry into host cell / induction by virus of host autophagy / lysis of host organelle involved in viral entry into host cell / pore formation by virus in membrane of host cell / pore-mediated entry of viral genome into host cell / positive stranded viral RNA replication / protein oligomerization / RNA-protein covalent cross-linking / suppression by virus of host gene expression / suppression by virus of host mRNA export from nucleus / suppression by virus of host RIG-I activity by RIG-I proteolysis / suppression by virus of host translation initiation factor activity / transcription, DNA-templated / viral RNA genome replication / virion attachment to host cell
Components
host cell cytoplasmic vesicle membrane / integral to membrane of host cell / membrane / T=pseudo3 icosahedral viral capsid
General Function
Structural molecule activity
Specific Function
Capsid protein VP1: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome. Capsid protein VP1 mainly forms the vertices of the capsid. Capsid protein VP1 interacts with host ICAM1 to provide virion attachment to target host cells. This attachment induces virion internalization. Tyrosine kinases are probably involved in the entry process. After binding to its receptor, the capsid undergoes conformational changes. Capsid protein VP1 N-terminus (that contains an amphipathic alpha-helix) and capsid protein VP4 are externalized. Together, they shape a pore in the host membrane through which viral genome is translocated to host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP2: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP3: Forms an icosahedral capsid of pseudo T=3 symmetry with capsid proteins VP2 and VP3. The capsid is 300 Angstroms in diameter, composed of 60 copies of each capsid protein and enclosing the viral positive strand RNA genome (By similarity).Capsid protein VP4: Lies on the inner surface of the capsid shell. After binding to the host receptor, the capsid undergoes conformational changes. Capsid protein VP4 is released, Capsid protein VP1 N-terminus is externalized, and together, they shape a pore in the host membrane through which the viral genome is translocated into the host cell cytoplasm. After genome has been released, the channel shrinks (By similarity).Capsid protein VP0: Component of immature procapsids, which is cleaved into capsid proteins VP4 and VP2 after maturation. Allows the capsid to remain inactive before the maturation step (By similarity).Protein 2A: Cysteine protease that cleaves viral polyprotein and specific host proteins. It is responsible for the cleavage between the P1 and P2 regions, first cleavage occurring in the polyprotein. Cleaves also the host translation initiation factor EIF4G1, in order to shut down the capped cellular mRNA translation. Inhibits the host nucleus-cytoplasm protein and RNA trafficking by cleaving host members of the nuclear pores (By similarity).Protein 2B: Plays an essential role in the virus replication cycle by acting as a viroporin. Creates a pore in the host reticulum endoplasmic and as a consequence releases Ca2+ in the cytoplasm of infected cell. In turn, high levels of cyctoplasmic calcium may trigger membrane trafficking and transport of viral ER-associated proteins to viroplasms, sites of viral genome replication (By similarity).Protein 2C: Induces and associates with structural rearrangements of intracellular membranes. Displays RNA-binding, nucleotide binding and NTPase activities. May play a role in virion morphogenesis and viral RNA encapsidation by interacting with the capsid protein VP3 (By similarity).Protein 3AB: Localizes the viral replication complex to the surface of membranous vesicles. Together with protein 3CD binds the Cis-Active RNA Element (CRE) which is involved in RNA synthesis initiation. Acts as a cofactor to stimulate the activity of 3D polymerase, maybe through a nucleid acid chaperone activity (By similarity).Protein 3A: Localizes the viral replication complex to the surface of membranous vesicles. It inhibits host cell endoplasmic reticulum-to-Golgi apparatus transport and causes the dissassembly of the Golgi complex, possibly through GBF1 interaction. This would result in depletion of MHC, trail receptors and IFN receptors at the host cell surface (By similarity).Viral protein genome-linked: acts as a primer for viral RNA replication and remains covalently bound to viral genomic RNA. VPg is uridylylated prior to priming replication into VPg-pUpU. The oriI viral genomic sequence may act as a template for this. The VPg-pUpU is then used as primer on the genomic RNA poly(A) by the RNA-dependent RNA polymerase to replicate the viral genome. VPg may be removed in the cytoplasm by an unknown enzyme termed "unlinkase". VPg is not cleaved off virion genomes because replicated genomic RNA are encapsidated at the site of replication (By similarity).Protein 3CD: Is involved in the viral replication complex and viral polypeptide maturation. It exhibits protease activity with a specificity and catalytic efficiency that is different from protease 3C. Protein 3CD lacks polymerase activity. The 3C domain in the context of protein 3CD may have an RNA binding activity (By similarity).Protease 3C: cleaves host DDX58/RIG-I and thus contributes to the inhibition of type I interferon production. Cleaves also host PABPC1 (By similarity).RNA-directed RNA polymerase: Replicates the viral genomic RNA on the surface of intracellular membranes. May form linear arrays of subunits that propagate along a strong head-to-tail interaction called interface-I. Covalently attaches UMP to a tyrosine of VPg, which is used to prime RNA synthesis. The positive stranded RNA genome is first replicated at virus induced membranous vesicles, creating a dsRNA genomic replication form. This dsRNA is then used as template to synthesize positive stranded RNA genomes. ss(+)RNA genomes are either translated, replicated or encapsidated (By similarity).
Pfam Domain Function
Transmembrane Regions
Not Available
Cellular Location
Virion
Gene sequence
>lcl|BSEQ0017079|Genome polyprotein
ATGGGCGCTCAGGTTTCTACACAGAAAAGTGGATCTCACGAAAATCAAAACATTTTGACC
AATGGATCAAATCAGACTTTCACAGTTATAAATTACTATAAGGATGCAGCAAGTACATCA
TCAGCTGGTCAATCACTGTCAATGGACCCATCTAAGTTTACAGAACCAGTTAAAGATCTC
ATGCTTAAGGGTGCACCAGCATTGAATTCACCCAATGTTGAGGCCTGTGGTTATAGTGAT
AGAGTACAACAAATCACACTCGGGAATTCAACAATAACAACACAAGAAGCAGCCAACGCT
GTTGTGTGTTATGCTGAATGGCCAGAGTACCTTCCAGATGTGGACGCTAGTGATGTCAAT
AAAACTTCAAAACCAGACACTTCTGTCTGTAGGTTTTACACATTGGATAGTAAGACATGG
ACAACAGGTTCTAAAGGCTGGTGCTGGAAATTACCAGATGCACTCAAGGATATGGGTGTG
TTCGGGCAAAACATGTTTTTCCACTCACTAGGAAGATCAGGTTACACAGTACACGTTCAG
TGCAATGCCACAAAATTCCATAGCGGTTGTCTACTTGTAGTTGTAATACCAGAACACCAA
CTGGCTTCACATGAGGGTGGCAATGTTTCAGTTAAATACACATTCACGCATCCAGGTGAA
CGTGGTATAGATTTATCATCTGCAAATGAAGTGGGAGGGCCTGTCAAGGATGTCATATAC
AATATGAATGGTACTTTATTAGGAAATCTGCTCATTTTCCCTCACCAGTTCATTAATCTA
AGAACCAATAATACAGCCACAATAGTGATACCATACATAAACTCAGTACCCATTGATTCA
ATGACACGTCACAACAATGTCTCACTGATGGTCATCCCTATTGCCCCTCTTACAGTACCA
ACTGGAGCAACTCCCTCACTCCCTATAACAGTCACAATAGCACCTATGTGCACTGAGTTC
TCTGGGATAAGGTCCAAGTCAATTGTGCCACAAGGTTTGCCAACTACAACTTTGCCGGGG
TCAGGACAATTCTTGACCACAGATGACAGGCAATCCCCCAGTGCACTGCCAAATTATGAG
CCAACTCCAAGAATACACATACTAGGGAAAGTTCATAACTTGCTAGAAATTATACAGGTA
GATACACTCATTCCTATGAACAACACGCATACAAAAGATGAGGTTAACAGTTACCTCATA
CCACTAAATGCAAACAGGCAAAATGAGCAGGTTTTTGGGACAAACCTGTTTATTGGTGAT
GGGGTCTTCAAAACTACTCTTCTGGGTGAAATTGTTCAGTACTATACACATTGGTCTGGA
TCACTTAGATTCTCTTCGATGTATACTGGTCCTGCCTTGTCCAGTGCTAAACTCACTCTA
GCATACACCCCGCCTGGTGCTCGTGGTCCACAGGACAGGAGAGAAGCAATGCTAGGTACT
CATGTTGTCTGGGATATTGGTCTGCAATCCACCATAGTAATGACAATACCATGGACATCA
GGGGTGCAGTTTAGATATACTGATCCAGATACATACACCAGTGCTGGCTTTCTATCATGT
TGGTATCAAACTTCTCTTATACTTCCCCCAGAAACGACCGGCCAGGTCTACTTATTATCA
TTCATAAGTGCATGTCCAGATTTTAAGCTTAGGCTGATGAAAGATACTCAAACTATCTCA
CAGACTGTTGCACTCACTGAAGGCTTAGGTGATGAATTAGAAGAAGTCATCGTTGAGAAA
ACGAAACAGACGGTGGCCTCAATCTCATCTGGTCCAAAACACACACAAAAAGTCCCCATA
CTAACTGCAAACGAAACAGGGGCCACAATGCCTGTTCTTCCATCAGACAGCATAGAAACC
AGAACTACCTACATGCACTTTAATGGTTCAGAAACTGATGTAGAATGCTTTTTGGGTCGT
GCAGCTTGTGTGCATGTAACTGAAATACAAAACAAAGATGCTACTGGAATAGATAATCAC
AGAGAAGCAAAATTGTTCAATGATTGGAAAATCAACCTGTCCAGCCTTGTCCAACTTAGA
AAGAAACTGGAACTCTTCACTTATGTTAGGTTTGATTCTGAGTATACCATACTGGCCACT
GCATCTCAACCTGATTCAGCAAACTATTCAAGCAATTTGGTGGTCCAAGCCATGTATGTT
CCACATGGTGCCCCGAAATCCAAAAGAGTGGGCGATTACACATGGCAAAGTGCTTCAAAC
CCCAGTGTATTCTTCAAGGTGGGGGATACATCAAGGTTTAGTGTGCCTTATGTAGGATTG
GCATCAGCATATAATTGTTTTTATGATGGTTACTCACATGATGATGCAGAAACTCAGTAT
GGCATAACTGTTCTAAACCATATGGGTAGTATGGCATTCAGAATAGTAAATGAACATGAT
GAACACAAAACTCTTGTCAAGATCAGAGTTTATCACAGGGCAAAGCTCGTTGAAGCATGG
ATTCCAAGAGCACCCAGAGCACTACCCTACACATCAATAGGGCGCACAAATTATCCTAAG
AATACAGAACCAGTAATTAAGAAGAGGAAAGGTGACATTAAATCCTATGGTTTAGGACCT
AGGTACGGTGGGATTTATACATCAAATGTTAAAATAATGAATTACCACTTGATGACACCA
GAAGACCACCATAATCTGATAGCACCCTATCCAAATAGAGATTTAGCAATAGTCTCAACA
GGAGGACATGGTGCAGAAACAATACCACACTGTAACCGTACATCAGGTGTTTACTATTCC
ACATATTACAGAAAGTATTACCCCATAATTTGCGAAAAGCCCACCAACATCTGGATTGAA
GGAAGCCCTTATTACCCAAGTAGATTTCAAGCAGGAGTGATGAAAGGGGTTGGGCCGGCA
GAGCTAGGAGACTGCGGTGGGATTTTGAGATGCATACATGGTCCCATTGGATTGTTAACA
GCTGAAGGTAGTGGATATGTTTGTTTTGCTGACATACGACAGTTGGAGTGTATCGCAGAG
GAACAGGGGCTGAGTGATTACATCACAGGTTTGGGTAGAGCTTTTGGTGTCGGGTTCACT
GACCAAATCTCAACAAAAGTCACAGAACTACAAGAAGTGGCGAAAGATTTCCTCACCACA
AAAGTTTTGTCCAAAGTGGTCAAAATGGTTTCAGCTTTAGTGATCATTTGCAGAAATCAT
GATGACTTGGTCACTGTTACGGCCACTCTAGCACTACTTGGATGTGATGGATCTCCTTGG
AGATTTCTGAAGATGTACATTTCCAAACACTTTCAGGTGCCTTACATTGAAAGACAAGCA
AATGATGGATGGTTCAGAAAGTTTAATGATGCATGTAATGCTGCAAAGGGATTGGAATGG
ATTGCTAATAAGATTTCCAAACTGATTGAATGGATAAAAAACAAAGTACTTCCCCAAGCC
AAAGAAAAACTAGAATTTTGTAGTAAACTCAAACAACTTGATATACTAGAGAGACAAATA
ACCACCATGCATATCTCGAATCCAACACAGGAAAAACGAGAGCAGTTGTTCAATAACGTA
TTGTGGTTGGAACAAATGTCGCAAAAGTTTGCCCCATTTTATGCCGTTGAATCAAAAAGA
ATCAGGGAACTCAAGAACAAAATGGTAAATTATATGCAATTTAAAAGTAAACAAAGAACT
GAACCAGTGTGTGTATTAATCCATGGTACACCCGGTTCTGGTAAATCATTAACAACATCC
ATTGTGGGACGTGCAATTGCAGAACACTTCAATTCAGCAGTATATTCACTTCCACCAGAT
CCCAAGCACTTTGATGGTTATCAGCAACAGGAAGTTGTGATTATGGATGATCTGAACCAA
AATCCAGATGGACAGGATATAAGCATGTTTTGTCAAATGGTTTCTTCAGTGGATTTCTTG
CCTCCAATGGCTAGTTTAGATAACAAGGGCATGTTATTCACCAGTAATTTTGTTCTAGCC
TCCACAAATTCTAACACACTAAGCCCCCCAACAATCTTGAATCCTGAAGCTTTAGTCAGG
AGATTTGGTTTTGACCTAGATATATGTTTGCATACTACCTACACAAAGAATGGAAAACTC
AATGCAGGCATGTCAACCAAGACATGCAAAGATTGCCATCAACCATCTAATTTCAAGAAA
TGTTGCCCCCTAGTCTGTGGAAAAGCTATTAGCTTGGTAGACAGAACTACCAACGTTAGG
TATAGTGTGGATCAACTGGTCACGGCTATTATAAGTGATTTCAAGAGCAAAATGCAAATT
ACAGATTCCCTAGAAACACTGTTTCAAGGACCAGTGTATAAAGATTTAGAGATTGATGTT
TGCAACACACCACCTTCAGAATGTATCAACGATTTACTGAAATCTGTAGATTCAGAAGAG
ATTAGGGAATATTGTAAGAAGAAGAAATGGATTATACCTGAAATTCCTACCAACATAGAA
AGGGCTATGAATCAAGCCAGCATGATTATTAATACTATTCTGATGTTTGTCAGTACATTA
GGTATTGTTTATGTCATTTATAAATTGTTTGCTCAAACTCAAGGACCATATTCTGGTAAC
CCGCCTCACAATAAACTAAAAGCCCCAACTTTACGCCCAGTTGTTGTGCAAGGACCAAAC
ACAGAATTTGCACTATCCCTGTTAAGGAAAAACATAATGACTATAACAACCTCAAAGGGA
GAGTTCACAGGGTTAGGCATACATGATCGTGTCTGTGTGATACCCACACACGCACAGCCT
GGTGATGATGTACTAGTGAATGGTCAGAAAATTAGAGTTAAGGATAAGTACAAATTAGTA
GATCCAGAGAACATTAATCTAGAGCTTACAGTGTTGACTTTAGATAGAAATGAAAAATTC
AGAGATATCAGGGGATTTATATCAGAAGATCTAGAAGGTGTGGATGCCACTTTGGTAGTA
CATTCAAATAACTTTACCAACACTATCTTAGAAGTTGGCCCTGTAACAATGGCAGGACTT
ATTAATTTGAGTAGCACCCCCACTAACAGAATGATTCGTTATGATTATGCAACAAAAACT
GGGCAGTGTGGAGGTGTGCTGTGTGCTACTGGTAAGATCTTTGGTATTCATGTTGGCGGT
AATGGAAGACAAGGATTTTCAGCTCAACTTAAAAAACAATATTTTGTAGAGAAACAAGGC
CAAGTAATAGCTAGACATAAGGTTAGGGAGTTTAACATAAATCCAGTCAACACGGCAACT
AAGTCAAAATTACATCCCAGTGTATTTTATGATGTTTTTCCAGGTGACAAGGAACCTGCT
GTATTGAGTGACAATGATCCCAGACTGGAAGTTAAATTGACTGAATCATTATTCTCTAAG
TACAAGGGGAATGTAAATACGGAACCCACTGAAAATATGCTTGTGGCTGTAGACCATTAT
GCAGGGCAACTATTATCACTAGATATCCCCACTTCTGAACTTACACTAAAAGAAGCATTA
TATGGAGTAGATGGACTAGAACCTATAGATATTACAACCAGTGCAGGATTTCCCTATGTG
AGTCTTGGGATCAAAAAGAGAGACATTCTGAATAAAGAGACCCAGGACACAGAAAAGATG
AAGTTTTATCTAGACAAGTATGGCATTGACTTGCCTCTAGTTACATATATTAAGGATGAA
TTAAGAAGTGTTGACAAAGTCCGATTAGGGAAAAGTAGATTAATTGAAGCCTCCAGTTTG
AATGATTCTGTTAACATGAGAATGAAACTAGGCAACCTTTACAAAGCATTCCATCAAAAT
CCCGGTGTTCTGACTGGATCAGCAGTGGGTTGTGATCCTGATGTGTTTTGGTCTGTCATC
CCTTGCTTAATGGATGGGCACCTGATGGCATTTGATTACTCTAATTTTGATGCCTCTTTG
TCACCAGTTTGGTTTGTCTGTCTAGAGAAGGTTTTGACCAAGTTAGGCTTTGCAGGCTCT
TCATTAATTCAATCAATTTGTAATACCCATCATATCTTTAGGGATGAAATATATGTGGTT
GAAGGTGGCATGCCCTCAGGGTGTTCAGGAACCAGCATATTCAATTCCATGATCAACAAC
ATAATCATTAGGACTTTGATATTAGATGCATATAAAGGAATAGATTTAGACAAACTTAAA
ATCTTAGCTTACGGTGATGATTTGATTGTTTCTTATCCTTATGAACTGGATCCACAAGTG
TTGGCAACTCTTGGTAAAAATTATGGACTAACCATCACACCCCCAGACAAATCTGAAACT
TTTACAAAAATGACATGGGAAAACTTGACATTTTTAAAGAGATACTTCAAGCCTGATCAA
CAATTTCCCTTTTTGGTTCACCCAGTTATGCCCATGAAAGATATACATGAGTCAATCAGA
TGGACAAAGGATCCTAAAAACACACAGGATCACGTCCGATCATTATGCATGTTAGCATGG
CACTCAGGAGAAAAAGAGTACAATGAATTCATTCAGAAGATCAGAACTACTGACATTGGA
AAATGTCTAATTCTCCCAGAATACAGCGTACTTAGGAGGCGCTGGTTGGACCTCTTTTAG
Chromosome Location
Not Available
Locus
Not Available
External Identifiers
ResourceLink
UniProtKB IDP03303
UniProtKB Entry NamePOLG_HRV14
GenBank Gene IDK02121
General References
  1. Stanway G, Hughes PJ, Mountford RC, Minor PD, Almond JW: The complete nucleotide sequence of a common cold virus: human rhinovirus 14. Nucleic Acids Res. 1984 Oct 25;12(20):7859-75. [Article]
  2. Lee WM, Monroe SS, Rueckert RR: Role of maturation cleavage in infectivity of picornaviruses: activation of an infectosome. J Virol. 1993 Apr;67(4):2110-22. [Article]
  3. Callahan PL, Mizutani S, Colonno RJ: Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proc Natl Acad Sci U S A. 1985 Feb;82(3):732-6. [Article]
  4. Gustin KE, Sarnow P: Inhibition of nuclear import and alteration of nuclear pore complex composition by rhinovirus. J Virol. 2002 Sep;76(17):8787-96. [Article]
  5. Fuchs R, Blaas D: Uncoating of human rhinoviruses. Rev Med Virol. 2010 Sep;20(5):281-97. doi: 10.1002/rmv.654. [Article]
  6. Fuchs R, Blaas D: Productive entry pathways of human rhinoviruses. Adv Virol. 2012;2012:826301. doi: 10.1155/2012/826301. Epub 2012 Nov 26. [Article]
  7. Rossmann MG, Arnold E, Erickson JW, Frankenberger EA, Griffith JP, Hecht HJ, Johnson JE, Kamer G, Luo M, Mosser AG, et al.: Structure of a human common cold virus and functional relationship to other picornaviruses. Nature. 1985 Sep 12-18;317(6033):145-53. [Article]
  8. Arnold E, Rossmann MG: The use of molecular-replacement phases for the refinement of the human rhinovirus 14 structure. Acta Crystallogr A. 1988 May 1;44 ( Pt 3):270-82. [Article]
  9. Kolatkar PR, Bella J, Olson NH, Bator CM, Baker TS, Rossmann MG: Structural studies of two rhinovirus serotypes complexed with fragments of their cellular receptor. EMBO J. 1999 Nov 15;18(22):6249-59. [Article]
  10. Arnold E, Rossmann MG: Analysis of the structure of a common cold virus, human rhinovirus 14, refined at a resolution of 3.0 A. J Mol Biol. 1990 Feb 20;211(4):763-801. [Article]

Drug Relations

Drug Relations
DrugBank IDNameDrug groupPharmacological action?ActionsDetails
DB05102RupintrivirinvestigationalunknownDetails
DB080173-METHOXY-6-[4-(3-METHYLPHENYL)-1-PIPERAZINYL]PYRIDAZINEexperimentalunknownDetails
DB085091-[6-(2-CHLORO-4-METHYXYPHENOXY)-HEXYL]-IMIDAZOLEexperimentalunknownDetails
DB085402-[4-(2H-1,4-BENZOTHIAZINE-3-YL)-PIPERAZINE-1-LY]-1,3-THIAZOLE-4-CARBOXYLIC ACID ETHYLESTERexperimentalunknownDetails
DB085431-[2-HYDROXY-3-(4-CYCLOHEXYL-PHENOXY)-PROPYL]-4-(2-PYRIDYL)-PIPERAZINEexperimentalunknownDetails
DB03203SphingosineexperimentalunknownDetails
DB087195-(5-(6-CHLORO-4-(4,5-DIHYDRO-2-OXAZOLYL)PHENOXY)PENTYL)-3-METHYL ISOXAZOLEexperimentalunknownDetails
DB087205-(5-(4-(4,5-dihydro-2-oxazoly)phenoxy)pentyl)-3-methyl osoxazoleexperimentalunknownDetails
DB087215-(5-(2,6-dichloro-4-(4,5-dihydro-2-oxazolyl)phenoxy)pentyl)-3-(hydroxyethyl oxymethyleneoxymethyl) isoxazoleexperimentalunknownDetails
DB087225-(7-(6-chloro-4-(5-hydro-4-methyl-2-oxazolyl)phenoxy)heptyl)-3-methyl isoxazoleexperimentalunknownDetails
DB08723WIN-54954experimentalunknownDetails
DB087245-(5-(4-(5-hydro-4-methyl-2-oxazolyl)phenoxy)pentyl)-3-methyl isoxazoleexperimentalunknownDetails
DB08725(S)-5-(7-(4-(4-Ethyl-4,5-dihydro-2-oxazolyl)phenoxy)heptyl)-3-methylisoxazoleexperimentalunknownDetails
DB087265-(7-(4-(4,5-dihydro-2-oxazolyl)phenoxy)heptyl)-3-methyl isoxazoleexperimentalunknownDetails
DB087273-Methyl-5-(7-{4-[(4R)-4-methyl-4,5-dihydro-1,3-oxazol-2-yl]phenoxy}heptyl)-1,2-oxazoleexperimentalunknownDetails
DB087285-(3-(2,6-dichloro-4-(4,5-dihydro-2-oxazolyl)phenoxy)propyl)-3-methyl isoxazoleexperimentalunknownDetails